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The Economics of Resource Adequacy Planning: 

Why Reserve Margins Are Not Just About Keeping the Lights On
1
 

 

 

Reliability planning for the bulk power system, referred to as resource adequacy 

planning, has historically been based strictly on Loss of Load Expectation (LOLE), or the 

number of firm load shed events an electric system expects over a period of one or more years.  

In fact, the utility industry has for decades used an LOLE of ―1 day of firm load shed in 10 

years‖ (here simply referred to as the ―1-in-10‖ reliability standard) as the primary if not sole 

means for setting target reserve margins and capacity requirements in such resource adequacy 

analyses.  

This paper presents a case study to illustrate the advantages of supplementing the 

assessment of physical resource adequacy as measured by the 1-in-10 standard with an analysis 

of the economic costs and benefits associated with a given level of planning-reserve margins.  As 

seen during the California energy crisis, the primary economic consequence of reliability-related 

events is not necessarily in the frequency or duration of firm load shed events, but rather through 

market exposure in the form of unanticipated high power costs.  Thus, in addition to the value of 

avoided physical curtailments, the economic value of increased reserve margins includes both 

the reduction in other reliability-related costs, such as the high cost of emergency purchases, and 

the insurance value of reducing the likelihood of extremely high-cost outcomes.  We recommend 

that the definition of a reliability event not be limited to firm load shed events but include 

shortage events that have economic impacts due to unanticipated high costs.   

This paper shows that an economic simulation of bulk power reliability events and their 

costs and benefits can provide a greatly improved understanding of resource adequacy risks, help 

identify more cost-effective solutions to meet given resource adequacy standards, help clarify the 

link between economically efficient planning-reserve margins and physical reliability standards 

such as the 1-in-10 standard, and inform stakeholders about the value customers are receiving 

from paying for reserve capacity.  As we show, sole reliance on physical reliability standards 

easily results in setting target reserve margins that—depending on system size and 

characteristics—are either too low or too high to be cost-effective and economically efficient. 

                                                           

1
  Kevin Carden is the Director and Nick Wintermantel is a Principal of Astrape 

Consulting (www.astrape.com).  Johannes Pfeifenberger is a Principal and Practice Area Leader 

of The Brattle Group (www.brattle.com).  The authors would like to thank Paul Centolella, Reed 

Edwards, Philip Hanser, Scott Hempling, Delphine Hou, Kamen Madjarov, John Seelke, and 

Steven Stoft for helpful comments and discussions.  The opinions expressed in this article, as 

well as any errors or omissions, are solely those of the authors and do not necessarily reflect the 

views of Astrape Consulting, The Brattle Group, or our clients.  A shorter version of this paper 

was published as an article in the March 2011 issue of Public Utilities Fortnightly.  
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I.   Introduction  

For decades, the utility industry has been using the 1-in-10 standard as the primary if not 

sole means for setting target reserve margins and capacity requirements in resource adequacy 

analyses.  While the origination of the 1-in-10 metric is somewhat vague, there are multiple 

references to it in papers starting with articles by Calabrese from the 1940s.
2
  In the literature we 

surveyed, no justification was given for the reasonableness of the standard other than that it is 

approximately the level that customers were accustomed to.  Because customers rarely complain 

about the level of reliability they receive under the 1-in-10 standard, few question the 1-in-10 

metric as an appropriate standard.  In regions with capacity markets, such as PJM, some have 

questioned whether the 1-in-10 metric results in reserve margins that impose too large a cost on 

customers.
3
  However, to our knowledge little empirical work has been undertaken in recent 

history to quantify the economic value provided by reserve margins based on the 1-in-10 

standard or to confirm that sole reliance on such physical reliability standards produces a reserve 

margin that reasonably balances the tradeoff between the economic value of reliability and the 

cost of carrying the amount of planning reserves needed to maintain target reserve margins.   

While the 1-in-10 standard may have reasonably satisfied physical resource adequacy 

needs in the last half century, we believe that structural changes in energy and capacity markets, 

increased penetration of renewable and demand-side resources, and legislative changes raise the 

question of whether target reserve margins set solely based on the 1-in-10 standard are either too 

low or too high to be reasonably cost-effective and efficient today.  We also believe that 

customers and policy makers must have a means to understand the full economic value that 

additional capacity (i.e., higher reserve margins) provides beyond physical reliability.   

We supplement the 1-in-10 standard with an analysis that attempts to balance the 

economic value that customers receive from reliability with the cost of supplying that level of 

reliability.  Our position is that an economically efficient resource adequacy standard should: 

1) Provide a level of bulk power reliability that is meaningful to all customer classes 

2) Reasonably balance the economic value, including price-risk mitigation, that customers 

receive from resource adequacy with the cost of supplying that level of reliability  

3) Demonstrate to customers what economic and other benefits reserve margins provide 

beyond the physical reliability benefit 

4) Provide adequate investment incentives for suppliers of capacity-only products 

5) Result in a reasonably optimal mix of peaking resources that supply energy during the 

highest-load periods 

                                                           

2
  G. Calabrese, "Determination of Reserve Capacity by the Probability Method," 

Transactions of the American Institute of Electrical Engineers, vol. 69, no. 2, pp. 1681-1689, 

Jan. 1950. 

 
3
  For example, see James F. Wilson, ―Reconsidering Resource Adequacy, Part 1: Has the 

One-Day-in-10-Years Criterion Outlived Its Usefulness?‖ Public Utilities Fortnightly, April 

2010; and ―Reconsidering Resource Adequacy, Part 2: Capacity Planning for the Smart Grid,‖ 

Public Utilities Fortnightly, May 2010. 
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6) Consider the ability of a system to absorb energy-limited, non-dispatchable, and demand-

side resources 

 The economic reliability study presented in this paper attempts to address and balance 

these goals.  Looking at resource adequacy from both a physical and economic standpoint not 

only allows planners to derive more than just a target reserve margin, but also provides a 

comprehensive framework that allows planners to understand tradeoffs between the costs and 

benefits of adding planning reserves, analyze the cost of renewable resource integration, and 

measure more accurately the resource adequacy value of renewable and demand-side resources.  
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II.   Resource Adequacy Modeling—Overview 

Resource adequacy modeling differs significantly from typical production cost modeling.  

Production cost modeling is designed to determine ―expected average system costs‖ over one or 

multiple years with a handful of sensitivities, which makes it well-suited to performing fuel 

budget studies, RFP evaluations, and resource planning studies.  The consideration of resource 

adequacy and associated uncertainties typically is only a minor component of those studies.  

However, when resource adequacy is the key concern, reliability modeling is necessary:  It 

makes it possible to simulate the many (potentially thousands of) scenarios needed to ensure that 

low-probability but possible extreme system conditions, like the weather conditions recently 

experienced in Texas and the Southwest, are actually captured and assigned the correct 

probabilities.  This analysis is typically done with a bulk power reliability planning tool that can 

run thousands of hourly scenarios quickly and is designed to handle load uncertainty (e.g., as 

driven by weather), the stochastic
4
 nature of generation-unit and transmission-interface outages, 

and emergency operating procedures during reliability events.  In the case study discussed 

below, the Strategic Energy and Risk Valuation Model (SERVM) was used for this type of 

reliability modeling.
5
 

Three of the most significant input variables in any resource adequacy study are weather, 

load growth forecast error, and generator outages.  All three of these components need to be 

considered both inside and outside of the region being analyzed to determine the extent to which 

neighboring systems can help mitigate forced outages or high costs during scarcity and other 

reliability events.   

Weather impact on load and generation is often the largest driver of resource adequacy 

uncertainty when looking ahead a single year.  For instance, the Southeast had a significant 

drought in 2007 and also had temperatures substantially above ―normal weather,‖ resulting in 

loads that were greater than 6 percent above the expected peak load and hydro energy that was 

below normal.  Without sufficient planning-reserve margins, reliability would have been a major 

concern.  Weather diversity across regions is also a big driver in resource adequacy.  If loads 

across regions peak at exactly the same time, little support may be available from neighboring 

systems.  Weather will determine the availability of other energy-limited resources such as wind 

and solar as well as affect the capacities of thermal resources.  As seen recently in Texas and the 

                                                           

4
  Stochastic modeling is a probabilistic (i.e., non-deterministic) modeling process.  For 

example, this might involve simulations of a large number of scenarios for which a generator’s 

outage state is determined by drawing randomly from a probability distribution of outage states, 

including both full and partial outages.  Each scenario is assigned a probability such that both the 

average and statistical distributions of possible outcomes can be determined. 

5
  SERVM has been used extensively by large utilities in the southeastern U.S.  In 

contrast to several other reliability modeling tools (such as GE-MARS), SERVM allows for the 

explicit consideration of economic factors such as the cost of emergency purchases, the cost of 

integrating intermittent or energy-limited resources, the cost of demand-side resource dispatch, 

and the economic and reliability value of tie-line capacity to neighboring power systems.  For 

more information regarding SERVM, see http://www.astrape.com/index.php?file=products.  

http://www.astrape.com/index.php?file=products
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Southwest, weather can also impact plant and natural gas availability, causing multiple 

generators to be unavailable simultaneously.  As discussed in more detail in Appendix B to this 

paper, weather is currently not being addressed sufficiently in many resource adequacy studies.   

The second factor, load growth forecast error, is the measure of the extent to which load 

forecasters will underestimate or overestimate economic growth for the next several years 

depending on the year being studied.  An accurate representation of economic forecast error must 

be included in any such analysis.    

The third major variable is generator outages.  It is important to simulate the percent of 

time that a system will have a significant amount of generation offline due to forced outages, 

including partial outages.  In many production cost models, only an average forced outage rate
6
 

is used, whereas reliability models seek to identify the impact of peak coincident outages
7
. 

Reliability models simulate random generator failure using Monte Carlo algorithms
8
.   

A detailed study that addresses resource adequacy must take into account the full 

distribution of these three input variables to understand the probability of having reliability 

events.  When considering the impact of these variables on available generation in neighboring 

systems that could be delivered across an interface, transmission must also be analyzed in detail.  

Even if a neighboring system has available resources, they may not be able to provide reliability 

support if adequate transmission is not available. 

The load and weather inputs along with system variables are then simulated against a 

range of reserve margins.  The lowest acceptable reserve margin yields reliability results that 

meet the specific metric that was selected to define the target reserve margin.  Often, this metric 

is an LOLE of 1-day-in-10-years.   

                                                           

6
  Average forced outage rates are typically used in production cost models that only 

allow for full outages to be represented.  A distribution of multiple outage states is used in 

reliability planning models to more accurately represent the distribution of outages across a 

system.        

7
  Peak coincident outages are reflected in reliability models as distributions of the 

amount of system capacity that could be unavailable due to forced outages during peak periods.   

When peak coincident outages are above normal, reliability events are more likely to occur.     

8
  Monte Carlo algorithms are a class of computational algorithms that rely on repeated 

random sampling to create a large number of scenarios that are then simulated individually.   
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III.  Challenges of Relying Solely on the 1-in-10 Standard 

 There are several challenges associated with relying on the 1-in-10 standard for resource 

adequacy planning purposes.  These challenges mean that relying solely on the 1-in-10 standard 

will not generally result in the identification of economically efficient resource adequacy 

standards.  The following six points discuss these challenges in more detail.   

A.  Absence of a standard definition for 1-in-10  

As recognized in the recent effort by NERC and Reliability First Corporation, the 1-in-10 

reliability standard has different interpretations.
9
  Most resource adequacy planners define it as 

one event in 10 years and measure this by calculating Loss of Load Expectation in ―events per 

year.‖  For this definition, the 1-in-10 equates to 0.1 LOLE in events per year.
10

  However, others 

define it as one day (i.e., 24 hours) of load loss during a 10-year period and measure this by 

calculating Loss of Load Expectation in ―hours per year.‖  For this definition, the 1-in-10 metric 

equates to an LOLE of 2.4 hours per year, which would generally involve multiple outage 

events.
11

   

Figure 1 shows results from a case study we performed in which we compared the two 

definitions for a 40,000 MW system with significant interconnections with neighboring systems.  

The left axis of the figure shows LOLE in events per year, while the right side represents LOLE 

in hours per year.  The figure shows that relying on the 0.1-event-per-year interpretation results 

in a higher reserve margin than using the 2.4-hours-per-year interpretation.  The target reserve 

margins that satisfy these two different definitions range from 14.5% under the first definition to 

only 10% under the second.   

While planners recognize that the 2.4-hours-per-year interpretation provides different 

reliability than the 1-event in-10-years interpretation, current reliability studies do not provide 

guidance as to which provides an economically efficient level of reliability.  Considering that 

both metrics are system-wide metrics, the actual physical reliability impact per customer is very 

small.  For example, the 2.4 hours-per-year interpretation for a certain system may correspond to 

approximately 7 minutes per customer per year.  Applying the 1-event-in-10-years interpretation 

to the same system means that each customer can expect approximately 1 minute per year of firm 

                                                           

9
  See FERC Notice of Proposed Rulemaking on Planning Resource Adequacy 

Assessment Reliability Standard, Docket No. RM10-10-000, October 21, 2010 (responding to 

NERC’s filing of the regional reliability standard BAL-502-RFC-02). 

10
  As an example for the application of this definition, see Standard BAL-502-RFC-02 of 

ReliabilityFirst Corporation (RFC) as posted at http://www.nerc.com/files/BAL-502-RFC-

02.pdf.   

11
  For example, the Southwest Power Pool utilizes the 2.4 loss of load hours definition of 

the 1-in-10 standard for resource adequacy assessments.  See also Milligan and Porter 

―Determining the Capacity Value of Wind:  A Survey of Methods and Implementation,‖ NREL 

Conference Paper, May 2005, as posted at http://www.nrel.gov/docs/fy05osti/38062.pdf. 

http://www.nerc.com/files/BAL-502-RFC-02.pdf
http://www.nerc.com/files/BAL-502-RFC-02.pdf
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load shed.
12

  Given that customers experience average distribution outages of approximately 150 

minutes per year,
13

 the incremental physical reliability benefit of 6 outage minutes gained by 

moving from 2.4 hours per year to 0.1 event per year is very small.  However, while the physical 

reliability benefits of changing these targets may be small, we demonstrate that the customer-cost 

and risk-mitigation benefits of the higher physical reliability requirement can be worth billions of 

dollars. 

Figure 1.  Two Alternative Interpretations of the 1-in-10 Standard 
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Moreover, the 1-in-10 standard also does not generally define the magnitude or duration 

of the firm load shed as measured by the Expected Unserved Energy (―EUE‖).  EUE for a power 

system is the energy a system was unable to serve due to capacity shortages likely caused by a 

combination of events such as generator outages, severe weather, or higher-than-expected load.  

Based on our experience with modeling different-sized systems, the average magnitude of EUE 

as a percentage of total load varies from 1% for large systems (greater than 30,000 MW) to 

                                                           

12
  These calculations assume 5% of load is shed during firm load shed: 5% x 2.4 hours = 

0.12 hours = 7.2 minutes; 1 event in 10 years corresponds to 0.3 hours of lost load per year from 

Figure 1. 5% x 0.3 = 0.015 hours = 0.9 minutes. 

13
  Joseph H. Eto and Kristina Hamachi LaCommare, Tracking the Reliability of the U.S. 

Electric Power System: An Assessment of Publicly Available Information Reported to State 

Public Utility Commissions, prepared for the Ernest Orlando Lawrence Berkeley National 

Laboratory, October 2008, p. 15, Table 4. 
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around 5% for relatively small systems (less than 10,000 MW).  Assuming that this relationship 

holds true across all large and small systems, the 1‐in‐10 standard does not provide the same 

level of reliability for customers in different-sized power systems even if both systems interpret 

the standard in terms of 1 load loss event in 10 years.  This is one reason why ―normalized EUE‖ 

(EUE divided by the ―Net Energy for Load‖) was adopted as a physical reliability metric for the 

NERC effort under the Generation and Transmission Planning Models Task Force 

(GTRPMTF).
14

   

Other areas where there is uncertainty due to lack of standard definition on the 

calculation of 1-in-10 include the simulation of only daily peak hours versus simulation of all 

hours and the definition of the point at which a loss-of-load event is recorded.  In some models, a 

loss-of-load event occurs as soon as the required operating reserves cannot be completely met.  

In other analyses, loss-of-load events are not recorded until all operating reserves have been 

depleted and firm load is actually curtailed.  

B. Absence of standard analytical inputs in resource adequacy studies 

As discussed above, the full range of possible values for the three main drivers of 

reliability (weather, load growth forecast error, and unit performance) must be taken into 

account.  Many planners rely on different processes to generate study input assumptions with 

respect to these variables and their uncertainty.  Based on our experience with resource adequacy 

studies from across the country, target reserve margins can vary by 8 percentage points (e.g., 

from 4 percentage points too low to 4 percentage points too high) based simply on different 

approaches to the selection of input variables.  As shown in Appendix B, choosing between 

severe or mild historical weather load shapes alone can significantly impact LOLE results.  The 

assumptions regarding load uncertainty due to economic growth will also shift LOLE results 

considerably.  This uncertainty in reserve margins is in addition to the range of different results 

associated with the alternative interpretations of the 1-in-10 standard discussed above.  

C. Failure to consider the full customer cost of reliability-related events 

Like any solely physical reliability standard, the 1-in-10 standard assumes that a 

―reliability event‖ occurs only if firm load is shed.  However, reliability-related costs realistically 

also include costs associated with events such as calling on interruptible loads, dispatching high-

cost emergency resources such as older inefficient oil turbines, and making unanticipated costly 

emergency purchases from neighbors.   

 

                                                           

14
  See the NERC Generation and Transmission Reliability Planning Models Task Force 

(GTRPMTF) ―Final Report on Methodologies and Metrics – September and December 2010 

with Approvals and Revisions,‖ posted at 

http://www.nerc.com/docs/pc/gtrpmtf/GTRPMTF_Meth_&_Metrics_Report_final_w._PC_appro

vals,_revisions_12.08.10.pdf.  

http://www.nerc.com/docs/pc/gtrpmtf/GTRPMTF_Meth_&_Metrics_Report_final_w._PC_approvals,_revisions_12.08.10.pdf
http://www.nerc.com/docs/pc/gtrpmtf/GTRPMTF_Meth_&_Metrics_Report_final_w._PC_approvals,_revisions_12.08.10.pdf
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During the 2000-2001 California energy crisis, for example, only approximately 

8,000 MWh of firm load was shed during a total of 6 days.
15

  Even if these load drops are priced 

at $10,000/MWh, the economic cost of the curtailments is only $80 million, which is a small 

fraction of the estimated $50 billion in total costs attributed to the crisis.
16

  Similarly, in the case 

study presented below, a number of individual simulation outcomes had zero unserved energy 

but the possibility of total reliability-related costs that exceeded one billion dollars a year.   

Determining resource adequacy based only on the frequency of unserved energy 

completely ignores these economic risks.  Resource adequacy studies should consider the full 

range of reliability-related events, including economic impacts of high-cost events without 

curtailments, such as emergency purchases, in addition to the frequency of unserved energy. 

A typical criticism of the 1-in-10 standard is that it provides for more reliability than 

customers are willing to pay for, the argument being that even if the value of lost load is 

$20,000/MWh, the ―last CT‖ would need to displace 5 hours of lost load per year to be 

economically justifiable (assuming the carrying cost of a CT is $100/kW-yr).  However, our 

analysis shows that the majority of customer-side reliability costs may not be incurred in the 

form of lost load, which means the last CT actually provides substantially more value than just 

offsetting the cost of the firm load shed event, including the option value to dispatch the unit at 

cost whenever other dispatched or purchased resources would be more expensive.  When the full 

range of reliability-related impacts and costs is quantified, the 1-in-10 standard can actually 

result in target reserve margins that are too low in some regions of the country from an 

economic-efficiency and overall cost-effectiveness perspective.   

 

Figure 2 is an illustration showing how providing the same 1-in-10 reliability level for 

three systems that differ significantly in terms of size and resource mix yields substantially 

different cost exposure.  It shows that a smaller system with weak interconnections to 

neighboring systems has much less cost exposure at exactly the same level of physical reliability 

than a system with significant interconnections.  The reason is that for the small system with 

limited neighbor assistance to achieve 1-in-10 reliability, it must carry much higher reserves (a 

23% reserve margin).  However, the economic risk associated with this high reserve margin is 

very low, which means it is not likely that the high reserves would be justified on an economic 

basis.  For a larger system with a substantial amount of energy limited resources
17

 and significant 

tie-line assistance, the 1-in-10 standard yields a cost exposure that is much higher than for the 

                                                           

15
  Sweeney, James (2002), The California Electricity Crisis (Hoover Institution Press), 

ISBN 978-0817929121, p. 171. 

 
16

  Weare, Christopher (2003), The California Electricity Crisis: Causes and Policy 

Options (San Francisco: Public Policy Institute of California), ISBN 1-58213-064-7. 

http://www.ppic.org/content/pubs/report/R_103CWR.pdf., pp. 3-4. 

 
17

  That is, resources that cannot generate at the plant’s full capacity whenever needed 

(such as hydro plants, wind plants, combustion turbines with environmental operating constraints 

and demand response). 

http://www.ppic.org/content/pubs/report/R_103CWR.pdf
http://www.ppic.org/content/pubs/report/R_103CWR.pdf
http://en.wikipedia.org/wiki/San_Francisco
http://en.wikipedia.org/wiki/Public_Policy_Institute_of_California
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/1-58213-064-7
http://www.ppic.org/content/pubs/report/R_103CWR.pdf
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other systems, as it is expected that a system of this type would have more hours in which it had 

to rely on expensive market purchasers.    

 

Figure 2.  Illustration of Economic Risk for Different Systems 

(Average annual reliability-related costs) 
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D. Does not document the full economic value of reserve margins  

The 1-in-10 standard defines a target reserve margin and an associated level of physical 

bulk power reliability that ultimately means relatively little to customers or in terms of the 

overall cost and cost uncertainty of power supply.  Regardless of the interpretation of the 1-in-10 

metric, each consumer will expect to experience far less than one firm load shed event in 10 

years.  The practical benefits to customers of having a resource-adequacy-related firm load shed 

event once every 20 years versus experiencing one only every 100 years are negligible.  

However, as discussed earlier, even without any actual curtailments, the cost exposure 

differences that exist at varying levels of reserve margins can have a significant impact on 

customers' monthly bills.  By using an economic approach to quantify the economic value of 

different reserve margin targets, planners and regulators will gain a better understanding of the 

trade-off between higher capital costs, improved physical reliability, and reduced high-cost 

exposures in power markets.  
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E. Does not reflect customer preferences and changes in the value of reliability 

While most customers would likely agree that the 1- in-10 standard has been ―adequate‖ 

in the past, they might also be willing to accept a lower level of reliability if the savings from 

doing so were adequate compared to risks.  Or they may be willing to pay for a higher level of 

reliability if they highly value reliability or if doing so reduces energy cost uncertainty.  Given 

that the value of lost load is constantly changing due to new technology and evolving customer 

preferences, it is important that we periodically reevaluate customers’ perception of the value of 

reliability. 

F. Does not consider the mix of peaking resources that supply energy during 

high load periods  

Most reliability studies based on the 1-in-10 standard treat all capacity as the same from a 

resource adequacy perspective.  However, all capacity is not equal.  If combustion turbines are 

built for all peaking capacity needs, some of the turbines will only be required to be dispatched 

for 20 hours per year on average.  This is not cost-effective when other opportunities exist to 

meet peak load conditions.  For instance, demand-response resources can typically be procured 

for substantially lower costs if they are dispatched infrequently.  Energy storage technologies 

with only a few hours of storage may also be available to meet some peaking needs at 

comparatively lower capital costs.  

In addition, the economic value of energy-limited, intermittent, or non-dispatchable 

peaking resources will depend on their share of total system capability and the system’s mix of 

other resources.  A system with 8% demand response and energy-limited resource capacity will 

have a very different cost of reliability than a system with a 2% share of these resources, even 

though they both meet the 1-in-10 standard.  For example, the 8% system may have to incur 

much higher power-purchase costs during hours adjacent to the system peak to keep their 

energy-limited resources available for peak load conditions.  Similarly, intermittent resources 

will tend to have more capacity value in a system with energy-limited or hydro storage resources.  

A methodology that focuses only on firm load shed events would not account for these subtleties.  

A physical reliability standard such as 1-in-10 would not even recognize expensive reliability-

related purchases during near-peak conditions as a reliability event.  This reiterates the point that 

reliability events begin well before firm load is shed.  
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IV.  Evaluating and Defining Resource Adequacy Based on Economic Value 

We recommend that physical reliability standards be supplemented and target reserve 

margins be validated with an analysis of economic value and cost effectiveness.  The point at 

which the costs of providing additional capacity start to exceed all reliability-related economic 

benefits of the additional capacity, taking into account the full range and uncertainty of possible 

outcomes, can be used as a reference point to set economically efficient and cost-effective target 

reserve margins.   

This economically efficient and cost-effective target reserve margin may differ from the 

target reserve margins derived with the 1-in-10 standard—it can either be below or above the 

reserve-margin targets based solely on physical reliability.  Setting target planning reserves to 

include economic considerations achieves the above-stated goals of economic reliability 

planning.  Consumers will enjoy a level of reliability they are willing to pay for while also taking 

cost uncertainty into account.  They will be protected not only from excessive firm load 

shedding, but also from the high energy costs frequently associated with reliability-driven 

extreme market conditions.   

Economic resource adequacy planning also informs how renewable and other energy 

limited resources can be integrated into electric systems economically without adversely 

affecting reliability.  In regulated markets, this approach will also allow planners to develop a 

cost-effective mix of peaking resources for high load periods, such as the optimal mix of CT and 

demand-response capacity.  
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V.   A Framework for Economic Resource Adequacy Analyses 

To illustrate the application of economic considerations to bulk power reliability analysis, 

Astrape Consulting performed a case study using an actual (but for the purpose of this paper 

generalized) power system that includes approximately 40,000 MW of capacity.  The system 

consists of a typical resource mix with about 35% base load resources, 30% intermediate 

resources, and 35% peaking resources including natural gas turbines, oil turbines, demand 

response resources, and hydro.  The weather-normalized peak load is approximately 36,000 MW.  

The system, which also includes approximately 10,000 MW of interties with multiple 

neighboring systems, was modeled using the SERVM stochastic reliability simulation tool 

designed specifically for economic reliability analysis.   

Each generating unit was modeled based on its capacity, heat rate, fuel price, dispatch 

constraints (such as minimum up and minimum down times), startup times and costs, and 

historical outage events.  SERVM allows multiple states for each generator and uses Monte 

Carlo simulations to determine the outage state of every resource for each hour within each of 

the annual simulations.  40 annual weather shapes were constructed by modeling 40 individual 

annual load shapes based on 40 historical weather years and 40 historical hydro years.  A load 

growth forecast error distribution was created based on the accuracy of historical load 

forecasting.  Appendix B documents in more detail how the weather and load modeling was 

performed.   

SERVM commits and dispatches the system economically to meet load plus operating 

reserves during all 8,760 hours of a year and then calculates reliability costs and other reliability 

metrics such as LOLE and LOLH.  SERVM is a multi-area model that models directly 

interconnected neighboring regions to simulate out-of-region purchases over tielines when 

necessary for reliability.   

The resource adequacy analysis involves thousands of full annual simulations to yield an 

accurate picture of a system’s physical reliability and reliability-related costs.  For example, for 

each target reserve margin level simulated, all combinations of weather years (40 years) and load 

forecast errors (7 points) are simulated, resulting in 280 (40 x 7) scenarios.  Then each scenario 

runs for 400 iterations to achieve convergence on unit outage draws, resulting in 112,000 full-

year simulations (each for 8,760 hours) for each reserve margin level analyzed.  The results from 

these simulations are then used to determine the average and distribution of reliability-related 

costs for different reserve margin levels.  Simulating a sufficiently large range of reserve margins 

thus allows for both the identification of (1) the reserve margins that yield the lowest average 

costs and (2) an assessment of the cost uncertainty, including the risk (probability) that actual 

outcomes significantly exceed these average costs. 

A. Defining reliability-related costs 

Setting target reserve margins based on economic reliability simulations requires 

balancing the costs of adding new capacity against the benefit of adding that capacity.  For our 

case study, we assumed that new capacity would be a combustion turbine (CT).  In other regions, 

that may not be the appropriate marginal new resource.  It is also possible to evaluate a supply 

curve of new capacity that stretches from lower-cost demand-response resources to higher-cost 

additions of new physical generation. 
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As we change the level of installed capacity resources, we need to capture the total 

benefit of the additional capacity as well as the costs of that capacity.  This means the analysis 

must keep track of all production and purchase costs above the marginal cost of the new capacity 

resource as well as the fixed costs of the added new capacity.  Our analysis breaks these 

customer reliability costs into the following four categories:   

a. Production-related Reliability Costs – defined as any costs of the system’s 

physical generation above the dispatch cost of the new capacity resource.  This 

includes the dispatch of higher-cost generators such as oil-fired turbines and old 

natural gas turbine units.  The addition of a new capacity resource would offset 

some but not all of these costs.  

b. Emergency Purchase Costs – defined as the costs of any purchases at prices 

higher than the cost of the marginal capacity resource.  In our simulations, these 

emergency purchase costs, including purchases associated with demand-side 

resources, can range from $1/MWh above the dispatch cost of a CT to the cost of 

unserved energy (e.g., well in excess of $1,000/MWh) under extreme 

conditions.
18

  

c. Unserved Energy Costs – The value of lost load to customers.  This value 

typically is derived from customer surveys.   

d. Capacity Resource Carrying Costs – The annual carrying cost of adding 

additional capacity in $/kW-yr. 

 

B. Determining the cost of emergency purchases 

 The production-related reliability costs and unserved energy costs are easily tracked in 

most reliability models.  However, a portion of reliability-related costs are costs associated with 

unit dispatch and power purchases during reliability and emergency events.  As noted earlier, the 

majority of the costs seen from the California energy crisis were due to expensive market 

purchases.  A scarcity pricing model is thus necessary to model purchase costs during capacity 

shortages.  

 SERVM explicitly forecasts market prices during emergency and reliability-related 

shortage conditions.  Depending on the capacity available in surrounding markets and 

transmission constraints, SERVM uses scarcity pricing algorithms to forecast these prices.  

Prices can easily exceed $1,000/MWh during scarcity conditions.  For this case study, 10 years 

of actual historical prices from bilateral reliability and emergency purchases in the region were 

analyzed to estimate scarcity pricing curves that vary with reserve margin and the amount of 

capacity needed.  SERVM was then calibrated to an actual historical year to ensure that the 

model is accurately projecting the cost of such purchases.  In this calibration run, SERVM 

simulations were based on actual historical load and generator outages for the simulated year so 

                                                           

18
  Purchase prices during reliability or emergency events may also include premiums 

associated with high opportunity costs of energy-limited resources, emergency assistance 

available from high-dispatch-cost demand-side resources in neighboring systems, or markups 

related to the exercise of market power by suppliers during scarcity events.   
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that total annual reliability costs could be compared to actual historical costs to ensure reasonable 

simulation results.   

 It would be very difficult to calibrate a model to only unserved energy events because 

most regions do not have recent experience in which they incurred lost load that resulted from 

resource inadequacies.  In contrast, almost all regions have had market conditions during which 

capacity was very scarce and high dispatch and emergency purchase costs, including dispatch of 

high-cost demand-side resources, were incurred that could have been avoided or lowered if 

additional physical-capacity resources had been available in the region.   

 Figure 3 shows the scarcity pricing curves developed for this case study.  As reserve 

margins decrease and the system needs for purchases increase, purchase prices increase as well.   

Figure 3.  Scarcity Pricing Curves for Emergency Purchases 

(based on actual historic purchase cost data for the power system studied) 
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 This curve does not indicate the amount of purchases that will actually be available; it 

shows only the price one expects to pay for energy during peak load conditions and for this study 

is not allowed to exceed the value of EUE.  In some systems, purchase prices may not reach the 

levels shown here due to a variety of factors, such as regulatory restrictions, contractual cost-

based assistance from neighboring systems, or large amounts of demand-side resources that can 

be called upon at lower dispatch prices.  Systems also differ significantly as to the extent to 

which they rely on reliability or emergency purchases before firm load is shed.   
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C. Determining the lowest-average-cost reserve margin  

 Figure 4 summarizes one set of results from this case study.  The figure shows the 

probability-weighted average cost of various reliability-related cost elements as a function of 

planning-reserve margin.  The lowest-average-cost reserve margin can be determined, for 

example, based on the point at which total reliability-related costs plus the cost of carrying 

additional reserves is the lowest, ignoring the uncertainty of costs around the weighted average 

costs shown in the chart.  In our case study, this lowest-average-cost reserve margin is 12%.  But 

this result will vary significantly across regions based on their size, load shape, resource mix, and 

many other factors.   

Figure 4.  Risk-Neutral Optimal Reserve Margin  

-

50 

100 

150 

200 

250 

300 

350 

400 

450 

500 

Total 
Reliability 

Costs
M$

Expected Unserved Energy Costs

Emergency Purchases

Production Costs above a CT

CT Carrying Cost

Lowest-Average-Cost
Reserve Margin 
(Risk Neutral)

1-in 10 standard
assuming 2.4 hr per 

year

1-in-10 standard 
assuming 1 event 

in 10 years Risk Adjusted 
Reserve Margin 
(explained later) 

 

 Our analysis also shows that, for the system studied here, the primary driver of reliability 

costs is expensive market purchases or ―emergency purchases‖ as defined in our simulations.  In 

contrast, and contrary to common assumptions, the value of lost load is not the most important 

factor in determining optimal reserve margins.  Even if the value of lost load is changed by 

$5,000/MWh, the lowest-average-cost or risk-neutral optimal reserve margin shifts by only 

approximately 0.5 percentage points.   

 Importantly, as Figure 4 illustrates, because the cost of reliability events (in particular 

emergency purchases) increases quickly as reserve margins decline, omitting some of these costs 

in reserve margin evaluations can lead to greatly understated estimates of risk-neutral optimal 

reserve margins.  If one considered only the installed cost of peaking capacity and the value of 

lost load, the reserve margin that yields the lowest average costs would appear to be only 9%, 
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while it is 12% when all reliability-related costs are considered (and before even attributing any 

insurance value to risk mitigation, as discussed further below). 

D. Determining risk-adjusted reserve margins  

 In the presence of risk aversion, the value of higher reserve margins also includes the 

insurance value of avoiding infrequent high-cost outcomes.  While Figure 4 is informative, it 

over-simplifies the problem by only comparing fixed capacity costs with the long-term averages 

of very uncertain market exposures.  To perform a more informed comparison, the uncertainty of 

market exposure needs to be considered as well.   

 The probability distributions of the total annual reliability-related costs (excluding the 

more certain CT carrying costs) are shown in Figure 5.  The figure shows that substantial annual 

cost uncertainty exists at any given level of reserve margin.  Most of this cost uncertainty is 

associated with the risk of very infrequent high-cost outcomes.   

 As Figure 5 shows, for 90% of possible annual outcomes, the reliability-related reliability 

energy cost exposure is quite low for reserve margins in the 11% to 18% range.  It is only the last 

10% of possible annual outcomes (i.e., conditions likely experienced less than once in ten years) 

in which a combination of factors occur that cause substantial reliability-related costs.  For 

example, while the expected average of annual reliability-related costs at a 12% reserve margin 

is only $240 million, Figure 5 shows that there is a very small chance that total annual reliability-

related costs could be as high as $8.3 billion.  Assuming total retail rates are 10 cents/kWh, this 

maximum cost exposure would raise consumers’ annual costs by 50% for the system analyzed.  

These numbers are not out of line with estimates that the California Energy Crisis would have 

doubled retail rates if all costs had been passed through to customers.
5
   

 Considering that customers, utilities, regulators, and policy makers all tend to be risk-

averse to high-cost outcomes, the ―optimal‖ target reserve margin should consequently not be 

based solely on the lowest-average cost reserve margin, shown as 12% in Figure 4.  While a 12% 

reserve margin would offer the cheapest option for customers in terms of long-run average costs, 

the highest-cost outcomes that load-serving entities and customers would be exposed to might be 

unacceptable.   
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Figure 5.  Distribution of Reliability Cost Exposure 

-

1,000 

2,000 

3,000 

4,000 

5,000 

6,000 

7,000 

8,000 

9,000 

10,000 

Milllions
of Dollars

Probability

11% Reserve Margin

12% Reserve Margin

13% Reserve Margin

14% Reserve Margin

15% Reserve Margin

16% Reserve Margin

17% Reserve Margin

18% Reserve Margin

 

 

 In the insurance industry, premiums are frequently set using a 95% confidence level that 

the insurance company will be covered in the long term.  A similar calculation for determining 

the appropriate risk adjustment can be used for setting the target reserve margin.  Assuming that 

substituting the 95
th

 percentile cost for the weighted average cost is a proper risk adjustment, the 

―optimal‖ target reserve margin increases from 12% to 15% as shown in Figure 6.   
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Figure 6.  Lowest-Cost Reserve Margin at 95th Percentile Confidence Level 
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 As Figure 5 previously showed, installing additional CT capacity to increase the target 

reserve margin from 12% (the lowest-average cost shown in Figure 4) to 15% (the lowest cost 

risk-adjusted reserve margin shown in Figure 6) decreases reliability cost exposure.  At a 12% 

reserve margin, there is a 1% probability that costs could exceed $1.3 billion (with a maximum 

of $8.3 billion), while at a 15% reserve margin there is a 1% probability that costs could exceed 

$359 million (with a maximum of only $4.0 billion).  The change in reserve margin increases the 

incremental carrying costs of CTs by approximately $110 million per year (from approximately 

$150 million per year to about $260 million per year, as shown in Figure 6),
19

 which increases 

average retail rates by less than 1%.  However, the maximum possible reliability-cost-related 

annual retail rate impact is reduced from 50% to only approximately 25%.  While any such risk 

adjustment is subjective, using an economic framework nevertheless allows system planners and 

state regulators to consider the trade-offs between the costs and benefits of reliability.   

                                                           

19
  The incremental CT carrying costs shown in the two figures are relative to a 7% target 

reserve margin at which incremental CT carrying costs are zero for the purpose of these 

illustrations.   
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VI.  Conclusions 

 Our analysis shows that an economic simulation of bulk power reliability allows for a 

more informed determination of cost-effective and economically efficient target reserve margins.  

It also allows planners and policy makers to gain a much better understanding of the resource 

adequacy question, associated risks, and costs-versus-risks tradeoffs.  It further helps to answer 

the question of what customers are ―getting‖ for the cost of the additional reserves.  As the 

analysis shows, this value of additional reserves includes both (1) the reduction in expected 

average reliability-related costs such as the high cost of emergency purchases or the cost of 

curtailments; and (2) the insurance value associated with the reduction of infrequent but extremly 

high-cost outcomes.   

 

 Setting planning-reserve margins solely based on a physical reliability metric, such as the 

often inconsistently applied 1-in-10 standard, does not allow stakeholders to understand these 

costs and risks and their tradeoffs.  Our case study and past work for utility clients show that 

planning-reserve margins set based on an economic analysis of reliability costs and values tend 

to be in the 12% to 18% range for a medium-to-large system.  The range of these results is not 

fundamentally different from the range of planning-reserve margins that are derived solely with 

physical reliability measures, such as the 1-in-10 standard.  However, based on our experience, it 

is also often the case that reserve margins determined solely with physical reliablity analysis can 

differ by several percentage points from target reserve margins that are informed by an economic 

assessment of reliability.  These differences, which can be negative or positive, are not 

systematic and depend greatly on factors such as system size, interconnections, and regional 

resource mix.   

 

 In summary, we believe that an economic simulation of reliability costs and benefits for 

different levels of reserve margins can (1) provide a significantly improved understanding of 

resource adequacy risks, (2) help determine more cost-effective solutions that consider the 

tradeoff between the expected level and uncertainty of reliability-related costs, (3) help us 

understand the link between economically efficient target reserve margins and physical 

reliability standards such as the 1-in-10 standard, and (4) inform stakeholders about the value 

customers are receiving in exchange for paying for reserve capacity.  Sole reliance on physical 

reliability standards, in particular the often vaguely defined 1-in-10 standard, easily results in 

setting target reserve margins that—depending on system size and characteristics—are either too 

low or too high to be cost-effective and economically efficient. 
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Appendix A 

Questions to Ask About Resource Adequacy Analyses 

 

 Every substantial bulk power reliability event, whether or not caused by a natural 

disaster, has been subjected to intense scrutiny by the industry and its regulators.  For events 

caused by inadequate generation or import capabilities, the result of these reviews is typically a 

recommendation to address resource adequacy standards, the operational processes, or 

equipment that contributed to the event. However, it is impractical and cost-prohibitive to 

attempt to address every process and every piece of equipment that could impact bulk power 

reliability.   

 An analytical approach to study the economics of resource adequacy can quantify the 

cost and benefit of, as well as prioritize, proposed mitigation procedures.  In the current 

environment of a 1-day-in-10-years physical resource adequacy standard and an N-1 reliability 

standard for transmission, the industry has the difficult task of determining whether reliability 

events are simply due to inadequate resource adequacy or whether they are a necessary and 

efficient trade-off to avoid the higher cost of stricter standards.  Reliability studies that also 

evaluate the economics of resource adequacy standards would give regulators, utilities, and 

consumers visibility of the economic trade-offs between the costs of additional reserves and the 

risk exposure of carrying fewer reserves.   

 At the request of NRRI, we have compiled this set of questions that utilities, RTOs, and 

commissions can ask to arrive at a better understanding of the costs and benefits of reserve 

capacity. 

A.  General questions about reliability standards and target planning-reserve 

margins 

 

1. How are planning-reserve margins determined?   

2. Based on the 1-day-in-10-year or some other reliability standard?   

3. How is the 1-day-in-10-year standard defined and what approach and 

assumptions are used to calculate it? 

4. When have the economic and risk implications of planning-reserve 

margins based on the applicable resource adequacy standard last been 

evaluated? 

5. What economic and reliability value do customers receive from paying for 

reserve capacity at the current target reserve margin levels?  What benefits 

did customers receive by having a specific reserve margin in the past? 

6. By how much would the risks of high-cost outcomes (e.g., due to 

emergency purchases) and load shed events increase (or decrease) if the 

target reserve margin was reduced (or increased) by 1 percentage point? 

7. Does the market structure and applicable regulatory framework offer 

proper incentives to provide effective levels of reliability and cost 

stability? 
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8. What is the impact of price caps on setting an economic optimal reserve 

margin? 

9. Can generation and transmission planning be coordinated by considering 

the economic interaction between the two disciplines?  Or should they 

always be performed independently and with differing standards?  

10. To what extent is your system reliant on support from neighboring 

systems? 

11. How will the implementation of renewable portfolio standards affect 

reliability and cost exposure? 

 

B.  Specific questions about reliability studies   

 

1. Does the system in your balancing area or jurisdiction contain a high 

percentage of energy limited resources (i.e., solar, wind, hydro, pump 

storage, demand response)?  How do these impact reserve margin 

determinations?   

2. What levels of penetration of demand side resources would require 

increasing dispatchability of these resources to provide the maximum 

economic and reliability benefit? 

3. How will price-responsive loads impact the economics of reliability? 

4. How are the impact of extreme weather conditions and their impacts on 

loads and generation availability modeled?  How is the diversity of 

weather across neighboring systems modeled in terms of its impact on 

reliability and price risk mitigation? 

5. How will potential load growth from technology advancements such as 

electric vehicles affect reliability planning? 

6. What impact does transmission availability have on reliability costs to 

consumers and how is transmission availability modeled in reliability 

studies?   

7. What impact will significant base load coal retirements have on resource 

adequacy planning? 
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Appendix B: 

Additional Discussion of Resource Adequacy Study Inputs 

 

A. Weather 

 Weather is the most difficult variable for planners to get their hands around but 

accurate representation of how weather affects load is critical to achieving meaningful 

results in reliability studies.  The examples below show why it is important to model 

weather more robustly than what is done in many studies today.   

1. Weather impact on load shape 

 Depending on weather, the load shape in a given year or season can vary 

significantly.  Some years will have two to three weeks of severe weather, while other 

years will have only one day of severe weather.  LOLE calculations change drastically 

depending on the selected historical load shape.  To address the weather impact on load, 

most planners will select a load shape from a single historical year and then scale that 

load shape up or down with multipliers to simulate both weather and economic forecast 

error.  The problem with this approach is that the selected load shape significantly affects 

the LOLE results.  To document this impact, we took load shapes from five individual 

historical years and scaled them to exactly the same peak load and annual energy.  The 

same multipliers were then used for each of these five load shapes and each of them 

simulated in a reliability model.  Based on the 1-in-10 standard, the target reserve margin 

determined with these five load shapes varied by 6 percentage points—from a low of 8% 

to a high of 14%—as shown in the figure below.   
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 Most resource adequacy studies are not properly addressing this issue and are 

introducing a significant amount of error by relying only on a load shape taken from a 

single historical year without considering actual weather-related uncertainties.   
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 The chart below summarizes the alternative approach we have taken in the case 

study presented in the main body of this paper.  It represents a methodology that ensures 

that weather is being modeled accurately in load shapes.  The best representation of what 

weather may look like in a future year is to evaluate actual historic information.  To 

simulate a future year, we derive ―synthetic‖ load shapes by analyzing weather for the 

last 40 years.  This process develops a load-weather relationship based on the most recent 

load and weather information and then applies this relationship to 40 years of historical 

weather.  This creates a realistic weather-dependent distribution of load shapes that can 

be scaled to the future year being analyzed so that the average of the system peaks will be 

equal to the actual ―weather normalized‖ load forecast.  All of the 40 derived individual 

load shapes are given equal probability of occurrence in the simulation.  This also allows 

the planner to analyze what would happen if we had ―2006 weather‖ again and will 

capture the true weather-driven load uncertainty from one year to the next.   
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b.  Weather impact on resources 

 Temperatures, rainfall, wind speeds, hours of direct sun, and other weather 

parameters also significantly impact the capacity available from generating resources.  A 

portion or all of these parameters should be taken into account depending on the system’s 

resource mix.  Most models ignore the impact of temperature on thermal generating units 

and provide only a static representation for hydro, wind, and solar generation.   

 Our simulations link the thermal capacity to weather years similarly to the 

approach for load shapes discussed above.  By doing this, we can ensure that the 40 load 
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shapes that are being simulated can be correlated correctly with resource availability.  

Utilities planners in the Pacific Northwest, for example, have long recognized this issue 

with respect to their hydro fleet.  They model weather years for both load and resources 

similarly to how we have outlined.  The variability in their hydro fleet is significant and 

must be taken into account.  As the recent experiences in Texas and the Southwest have 

shown, extreme weather can lead to substantial simultaneous outages of resources. 

 To illustrate this point, we analyzed a system that contained approximately 15% 

hydro resources.  The analysis shows how the 1 day in 10 year reserve margin would 

change depending on the selected hydro year used in the study.  We forced all other 

variables (i.e., except hydro) to remain constant and chose a static single-year 

representation of hydro generation as most planners do.  The results, presented in the 

following figure, show that the target reserve margins determined in reliability studies 

can change by more than 5 percentage points—from approximately 8% to over 13%—

even if hydro resources account for only 15% of the total resource mix.   
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 As the chart shows, relying on static representations of such energy limited 

resources that are significantly dependent on weather introduces a significant amount of 

error in reliability studies.   

 

B. Economic forecast error modeling 

 In addition to correctly representing weather-related uncertainties, reliability 

studies need to consider the economic forecast error on anticipated future loads.  As 

stated previously, many planners tie weather and economic uncertainty into one 

multiplier and adjust load shapes by this multiplier.  As shown, this places too much 

emphasis on the chosen load shape.  A better way to handle economic forecast error is to 

separate it from weather-related components.  If weather uncertainty is represented 

through 40 weather years, the load forecast error multipliers and probabilities can be 
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applied to each of the 40 weather years.  Typically, 6-7 load forecast error point estimates 

and associated probabilities are sufficient, which means that the analysis has to consider 

40x6 to 40x7 (i.e., 240-280) simulations to capture the effect of weather and economic 

forecast error on loads.  This is not a problem given the computing power available today 

and the ability of fast dispatch-reliability planning models designed for this type of 

analysis.   

C. Unit outage modeling 

 Most reliability analyses place sufficient emphasis on simulating generation 

outages.  For reliability planning, the tails of the distribution are most important.  Figure 

4 shows a chart of two different distributions representing the amount of generating 

capacity offline for a given system.  One of the distributions is based on the ―convolution 

method‖ which is used by most production cost models.  But this distribution is sufficient 

only if a planner wants to understand the expected average outage pattern and is not 

particularly concerned with the full range of the underlying distribution.  In comparison, 

the second curve represents actual historical outages.  As this comparison shows, actual 

outage patterns show a much higher probability that more than 2,500 MWs will be offline 

compared with the probabilities provided by the convolution method.  A reliability model 

should be able to simulate a distribution that represents actual outage probabilities 

because it is in these low-probability outage situations that reliability events occur.  A 

Monte Carlo method based on frequency and duration of outages should be used to 

mimic the more accurate distribution.   
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D. Reliability assistance from neighboring systems 

 Some planners assume that their system is an island without the possibility of 

assistance from neighboring system.  Others only model a static representation of what is 

available in the market from neighbors.  Modeling reliability assistance from neighboring 

system correctly is another important factor in any resource adequacy study.   
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 In our experience, treating a system as an island results in target reserve margins 

that are 4 to 8 percentage points higher than if interties with neighboring systems were 

considered.  Understanding how much capacity is going to be available from neighboring 

systems consequently is an important factor in the analysis.  A multi-area transportation 

model that dispatches the system being studied as well as its neighbors is needed to truly 

understand what will be available in the region.  We all realize that during peak hours, 

when the entire region is experiencing similar weather and similar economic growth 

uncertainty, that there will be much less capacity available than during off peak hours.  

Nevertheless, most reliability analyses do not model the implications of this factor.  We 

recommend modeling different weather years for each neighboring system to accurately 

capture the region’s weather diversity.  For the case study discussed in the main part of 

this paper, the following figure shows how much capacity could be purchased at different 

load levels.  As expected, it shows that available purchases from neighboring systems 

drop off significantly as load reaches its ultimate peak.  This phenomenon needs to be 

captured because, as we have seen, many purchases are made during high-load hours 

close to system peak conditions to conserve the capacity of energy-limited resources for 

the peak periods.   
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E. Scenario modeling  

 The typical reliability study runs 10 cases representing 10 load forecast 

multipliers and then runs 500 unit outage draws for a total of 5,000 hourly simulations at 

a defined reserve margin level.  In the case study analyses discussed above we simulated 

280 combined weather and load forecast cases with 400 unit outage draws for a total of 

112,000 hourly, year-long simulations.  This is easily handled with today’s computing 

resources and ensures that weather as well as the other key variables is being taken into 

account accurately.  For this case study, SERVM performed these 112,000 annual 

simulations (with 8,760 hours each) in approximately 2 hours using a machine with eight 

processors.  This could be cut in half with the use of two computers.   

Peak Load 



B-6   

Reliance on single-year load shapes, static representation of energy limited resources, and 

only high-level assumptions about reliability assistance available from neighboring 

systems will introduce substantial error in the analysis.  Again, with the computing power 

available today, there is no longer any reason why planners modeling large 

interconnected regions would need to rely on such simplifications.   
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