Revenue Neutral Energy Efficiency Feebates

Pubic Utilities Commission of Ohio Workshop
Presented by David M. Boonin
NRRI Director of Electricity Research & Policy
September 17, 2008
Today’s Ground Rules

- Discuss the REEF w/o judging the merits of SFV rate design or decoupling.
- Not the opinion of Commissioners, PUC Staff or NRRI.
- Framework presented today may not be applicable to every situation.
- Paper on REEF previously circulated and available at NRRI website.
- Expanded discussion of REEF.
REEF as an Enhancement to SFV

- For contextual purposes, REEF discussed in association with SFV.
- Possible to consider REEF in other rate design environments. Beyond scope of prepared remarks.
What is a REEF?

- REEF = Revenue-neutral Energy Efficiency Feebate
- Not aware of usage by gas or electric utilities
What is a REEF?
“Revenue-neutral”

- Revenue neutral is from the utility’s perspective
- Revenue neutrality is really about income neutrality
- The revenue paid by individual customers is subject to change through fees and rebates
- No change occurs to SFV charge where income is recovered
What is a REEF?
“Energy Efficiency”

- “Energy Efficiency” is a place holder for any targeted change in consumption patterns, for example:
 - Curtailing peak demand
 - Encouraging conservation
 - Reducing carbon emissions

- Design of feebate depends on “energy efficiency” goal(s)
What is a REEF?
“Feebate”

- Feebate charges some customers a **fee** while granting others a **rebate**
- Used and proposed to encourage improved automobile MPG
- Fees are fully distributed as rebates, hence revenue neutrality
- Design of feebate depends on “energy efficiency” goal(s)
Setting The Fee

- Depends on goal. More than one fee if more than one goal
- Look at avoidable or long-term marginal cost
- Can a revenue neutral feebate provide a price signal to avoid costs yet to be incurred
 - New capacity for reliability
 - Resources to reduce price spikes – de facto DSR
 - Reduced carbon emissions
- Fee can allow price signals in excess of embedded costs
- Examples indicate that fee needs to be significant to have impact
How a REEF may Improve SFV

- More of a conservation incentive
- More protection of smaller users
- More protection of existing conservation investments
- Looks at avoidable costs versus embedded costs
REEF – Breaking Away from Embedded Cost Rate Design

- Rate designs usually afford utilities opportunity to recover embedded costs
- Including concepts in traditional revenue tariffs such as avoidable costs or long-term marginal costs often disrupts embedded cost-based revenue recovery paradigm
- REEF is revenue neutral so fees and rebates designed as price signals do not disrupt the revenue requirement balance
- REEF allows price signals that are set outside the embedded-cost paradigm
REEF is flexible

- Targets can be set to meet specific goals
- Today’s examples focus on general usage (conservation)
- Some other potential REEF targets
 - On peak usage (high wholesale cost of electricity)
 - Off peak usage (carbon from coal plants on margin)
 - Demand (reliability and avoidable capacity)
- Multiple goals possible as long as they do not conflict
 - E.g., off peak usage target and demand target each with their own REEF
REEF Design and Underlying Tariff

- REEF design could depend upon underlying variable charges
 - Real-time pricing
 - Time-of-Day
 - Seasonal
 - Demand charges
 - Increasing block rates

- Today, assuming SFV and comparing to Std Tariff with single block and full decoupling
Need for Technology

- Feebates can be more accurately calculated when AMR technology is installed
 - Avoids problems of estimated bills
 - Same applies for decoupling adjustment

- Feebate design (as is the case with rate design in general) can be constrained by metering technology and customer information systems
 - Demand meters, time-of-day meters, AMI
 - End uses, SIC, square footage
Homogeneous Customer Classes

- Fees and rebates should be kept within a customer class
- Classes should be relatively homogeneous (e.g., electric water heating customers vs. all-electric or commercial versus public schools)
- Feebates as discussed here may not be applicable to all classes of customers
- Options such as normalization should be considered before dismissing possibility (e.g. square feet for commercial retail customers)
- Lack of applicability to some classes is not a reason to dismiss REEF to other classes
REEF adjustment period

- Monthly adjustment keeps incentives current.
- Annual adjustments have problems
 - Changes in customer base
 - Potential large fee at year-end
 - Lack of current bill to reinforce behavior
- Use of billing period
 - Everyone in cycle has same weather and number of days, weekdays
 - Requires large enough customer class (utility can change billing cycles to consolidate a customer class)
- Second best may be all customers billed within a period
 - Keep aggregation period short (e.g. 3 days) and retain most of benefits of a single period while increasing the customers in the calculation pool.
 - Longer the period, greater the issues of unlike circumstances
Billing

- Potential calculation process
 - Fee established in tariff (e.g., cents/kWh above target usage)
 - Target usage for period calculated per tariff (e.g., system average or 20% above system average)
 - Charge the fee as appropriate
 - Determine revenues generated in period by charging the fee on excess usage to determine total rebate (not necessary if using mean)
 - Determine usage that is eligible for the rebate (e.g., below system average or usage 20% below system average)
 - Credit customers with rebate based total upon eligible usage (same as fee if using mean)
- Put goal oriented message on the bill
Reconciliation

- Zero sum game.
- Feebate calculations done when all factors are known.
- No reconciliation required for REEF.
- Decoupling adjustments require tracking, auditing and reconciliation.
Example - Assumptions

- Five customers
- Usage target of 1000 kWh (mean)
- Standard Tariff
 - Fixed Monthly Charge: $15
 - Variable Charge: $0.075/kWh
- SFV Tariff
 - Fixed Monthly Charge: $50
 - Variable Charge: $0.04
- REEF Fee
 - $0.05/excess kWh
- Excess usage=efficient usage as target is mean usage
- All cases assume no change in ROE or operating costs
Example – Start

<table>
<thead>
<tr>
<th>Customer Usage</th>
<th>#1 650 kWh</th>
<th>#2 900 kWh</th>
<th>#3 1000 kWh</th>
<th>#4 1200 kWh</th>
<th>#5 1250 kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVF Tariff</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
</tr>
<tr>
<td></td>
<td>$26.00</td>
<td>$36.00</td>
<td>$40.00</td>
<td>$48.00</td>
<td>$50.00</td>
</tr>
<tr>
<td></td>
<td>$76.00</td>
<td>$86.00</td>
<td>$90.00</td>
<td>$98.00</td>
<td>$100.00</td>
</tr>
<tr>
<td>REEF Fee or Rebate</td>
<td>-$17.50</td>
<td>-$5.00</td>
<td>$0.00</td>
<td>$10.00</td>
<td>$12.50</td>
</tr>
<tr>
<td>SVF with REEF</td>
<td>$58.50</td>
<td>$81.00</td>
<td>$90.00</td>
<td>$108.00</td>
<td>$112.50</td>
</tr>
<tr>
<td>Standard Tariff</td>
<td>$15.00</td>
<td>$15.00</td>
<td>$15.00</td>
<td>$15.00</td>
<td>$15.00</td>
</tr>
<tr>
<td></td>
<td>$48.75</td>
<td>$67.50</td>
<td>$75.00</td>
<td>$90.00</td>
<td>$93.75</td>
</tr>
<tr>
<td></td>
<td>$63.75</td>
<td>$82.50</td>
<td>$90.00</td>
<td>$105.00</td>
<td>$108.75</td>
</tr>
</tbody>
</table>
Start Results

- Represents starting point
- Total revenues same in both cases
- Feebate a straight calculation
 - $(\text{actual usage} - \text{mean usage}) \times \text{feebate}$
- Total bill is lower for efficient users and higher for excessive users with REEF than Standard Tariff
 - Assumption dependent
Example - Step 2
Average Consumption Down 100 kWh

<table>
<thead>
<tr>
<th>Customer Usage</th>
<th>#1 600 kWh</th>
<th>#2 750 kWh</th>
<th>#3 900 kWh</th>
<th>#4 1000 kWh</th>
<th>#5 1250 kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVF Tariff</td>
<td>$74.00</td>
<td>$80.00</td>
<td>$86.00</td>
<td>$90.00</td>
<td>$100.00</td>
</tr>
<tr>
<td>REEF Fee or Rebate</td>
<td>-$15.00</td>
<td>-$7.50</td>
<td>$0.00</td>
<td>$5.00</td>
<td>$17.50</td>
</tr>
<tr>
<td>SVF with REEF</td>
<td>$59.00</td>
<td>$72.50</td>
<td>$86.00</td>
<td>$95.00</td>
<td>$117.50</td>
</tr>
<tr>
<td>Standard Tariff</td>
<td>$60.00</td>
<td>$71.25</td>
<td>$82.50</td>
<td>$90.00</td>
<td>$108.75</td>
</tr>
<tr>
<td>Decoupling Adj.</td>
<td>$2.33</td>
<td>$2.92</td>
<td>$3.50</td>
<td>$3.89</td>
<td>$4.86</td>
</tr>
<tr>
<td>Std Tariff+ Decoupling</td>
<td>$62.33</td>
<td>$74.17</td>
<td>$86.00</td>
<td>$93.89</td>
<td>$113.61</td>
</tr>
</tbody>
</table>
Step 2 Results

- Each customer conserves a different amount.
- Decoupling adjustment calculated by taking total loss sales (500 kWh) \(\times \$0.035/\text{kWh} \) in income and dividing by total sales (4500 kWh).
- SVF with REEF still lower and higher at ends than Std Tariff.
- Customers who went from old mean of 1000 kWh to new mean of 900 kWh saved \$4 (\$90-86) in each case.
- Customers that saved more (absolute change) than change in mean saved more under REEF.
- Customers who did nothing had \$5 increase under REEF and \$4.86 for Std with decoupling.
- Results are assumption dependent.
Example - Step 3
Average Consumption Rises 25 kWh from Step 2

<table>
<thead>
<tr>
<th>Customer Usage</th>
<th>#1 600 kWh</th>
<th>#2 900 kWh</th>
<th>#3 925 kWh</th>
<th>#4 1025 kWh</th>
<th>#5 1175 kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVF Tariff</td>
<td>$74.00</td>
<td>$86.00</td>
<td>$87.00</td>
<td>$91.00</td>
<td>$97.00</td>
</tr>
<tr>
<td>REEF Fee or Rebate</td>
<td>-$16.25</td>
<td>-$1.25</td>
<td>$0.00</td>
<td>$5.00</td>
<td>$12.50</td>
</tr>
<tr>
<td>SVF with REEF</td>
<td>$57.75</td>
<td>$84.75</td>
<td>$87.00</td>
<td>$96.50</td>
<td>$109.50</td>
</tr>
<tr>
<td>Standard Tariff</td>
<td>$60.00</td>
<td>$82.50</td>
<td>$84.37</td>
<td>$91.87</td>
<td>$103.13</td>
</tr>
<tr>
<td>Decoupling Adj.</td>
<td>$1.70</td>
<td>$2.55</td>
<td>$2.63</td>
<td>$2.91</td>
<td>$3.33</td>
</tr>
<tr>
<td>Std Tariff+ Decoupling</td>
<td>$61.70</td>
<td>$85.05</td>
<td>$87.00</td>
<td>$94.78</td>
<td>$106.46</td>
</tr>
</tbody>
</table>
Step 3 Results

- Bill for mean usage still equal under each tariff
- Decoupling adjustment down because usage is up.
- REEF case 600kWh bill went down w/o change in usage because mean increased.
Case 1
Consumption Down 100 kWh by Everyone

<table>
<thead>
<tr>
<th>Customer Usage</th>
<th>#1 550 kWh</th>
<th>#2 800 kWh</th>
<th>#3 900 kWh</th>
<th>#4 1100 kWh</th>
<th>#5 1150 kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVF Tariff</td>
<td>$72.00</td>
<td>$82.00</td>
<td>$86.00</td>
<td>$94.00</td>
<td>$96.00</td>
</tr>
<tr>
<td>REEF Fee or Rebate</td>
<td>-$17.50</td>
<td>-$5.50</td>
<td>$0.00</td>
<td>$10.00</td>
<td>$12.50</td>
</tr>
<tr>
<td>SVF with REEF</td>
<td>$55.50</td>
<td>$76.50</td>
<td>$86.00</td>
<td>$104.00</td>
<td>$108.00</td>
</tr>
<tr>
<td>Standard Tariff</td>
<td>$56.25</td>
<td>$75.00</td>
<td>$82.50</td>
<td>$97.50</td>
<td>$101.25</td>
</tr>
<tr>
<td>Decoupling Adj.</td>
<td>$2.14</td>
<td>$3.11</td>
<td>$3.50</td>
<td>$4.28</td>
<td>$4.47</td>
</tr>
<tr>
<td>Std Tariff+ Decoupling</td>
<td>$58.39</td>
<td>$88.11</td>
<td>$86.00</td>
<td>$101.78</td>
<td>$105.72</td>
</tr>
</tbody>
</table>
Results – Case 1

- Feebates for each customer unchanged from start as mean usage shifted.
- Decoupling adjustment unchanged as total usage unchanged between Case 1 and Base Case Step 2
More Cases
Change the Design

- Case 2: Fee equals difference between Standard Tariff Variable Charge and SFV Variable Charge ($0.35)
 - Customer bills equal at base usage in REEF or Std Tariff

- Case 3: No fixed charge in Standard Tariff and Std Tariff variable charge equals SFV variable charge plus fee
 - Customer bills equal at base usage in REEF or Std Tariff

- Case 4: Higher feebate ($0.06)
 - REEF>Standard variable-SFV variable
 - Exceeds embedded cost model
Summary Results
Bill Comparison after Change

<table>
<thead>
<tr>
<th>Customer Usage</th>
<th>#1 600 kWh</th>
<th>#2 750 kWh</th>
<th>#3 900 kWh</th>
<th>#4 1000 kWh</th>
<th>#5 1250 kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base REEF</td>
<td>$59.00</td>
<td>$72.50</td>
<td>$86.00</td>
<td>$95.00</td>
<td>$117.50</td>
</tr>
<tr>
<td>Base Std</td>
<td>$62.33</td>
<td>$74.17</td>
<td>$86.00</td>
<td>$93.89</td>
<td>$113.61</td>
</tr>
<tr>
<td>#2 REEF</td>
<td>$63.50</td>
<td>$74.75</td>
<td>$86.00</td>
<td>$93.50</td>
<td>$112.25</td>
</tr>
<tr>
<td>#2 Std</td>
<td>$62.33</td>
<td>$74.17</td>
<td>$86.00</td>
<td>$93.89</td>
<td>$113.61</td>
</tr>
<tr>
<td>#3 REEF</td>
<td>$59.00</td>
<td>$72.50</td>
<td>$86.00</td>
<td>$95.00</td>
<td>$117.50</td>
</tr>
<tr>
<td>#3 Std</td>
<td>$57.33</td>
<td>$71.67</td>
<td>$86.00</td>
<td>$95.56</td>
<td>$119.44</td>
</tr>
<tr>
<td>#4 REEF</td>
<td>$56.00</td>
<td>$71.00</td>
<td>$86.00</td>
<td>$96.00</td>
<td>$121.00</td>
</tr>
<tr>
<td>#4 Std</td>
<td>$62.33</td>
<td>$74.17</td>
<td>$86.00</td>
<td>$93.89</td>
<td>$113.61</td>
</tr>
</tbody>
</table>
Bill Comparison Comments

- Mean always the same in these examples
- Cases 2 and 3 converge as start points were equal
- Usefulness of metric depends on goal
- Change in bill may be more useful as conservation incentive
Summary Results

Change in Bill Comparison

<table>
<thead>
<tr>
<th>Customer Decrease Usage</th>
<th>#1 50 kWh</th>
<th>#2 150 kWh</th>
<th>#3 100 kWh</th>
<th>#4 200 kWh</th>
<th>#5 0 kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base REEF</td>
<td>$0.50</td>
<td>-$8.50</td>
<td>-$4.00</td>
<td>-$13.00</td>
<td>$5.00</td>
</tr>
<tr>
<td>Base Std</td>
<td>-$1.42</td>
<td>-$8.33</td>
<td>-$4.00</td>
<td>-$11.11</td>
<td>$4.86</td>
</tr>
<tr>
<td>#2 REEF</td>
<td>-$0.25</td>
<td>-$7.75</td>
<td>-$4.00</td>
<td>-$11.50</td>
<td>$3.50</td>
</tr>
<tr>
<td>#2 Std</td>
<td>-$1.42</td>
<td>-$8.33</td>
<td>-$4.00</td>
<td>-$11.11</td>
<td>$4.86</td>
</tr>
<tr>
<td>#3 REEF</td>
<td>$0.50</td>
<td>-$8.50</td>
<td>-$4.00</td>
<td>-$13.00</td>
<td>$5.00</td>
</tr>
<tr>
<td>#3 Std</td>
<td>-$1.17</td>
<td>-$9.33</td>
<td>-$4.00</td>
<td>-$12.44</td>
<td>$6.94</td>
</tr>
<tr>
<td>#4 REEF</td>
<td>-$2.50</td>
<td>-$10.00</td>
<td>-$4.00</td>
<td>-$12.00</td>
<td>$8.50</td>
</tr>
<tr>
<td>#4 Std</td>
<td>-$1.42</td>
<td>-$8.33</td>
<td>-$4.00</td>
<td>-$11.11</td>
<td>$4.86</td>
</tr>
</tbody>
</table>
Bill Change Comments

- All changes total to -$20.00
- No difference at mean
- REEF does not provide as great of incentives for small amounts of conservation as Std Tariff until REEF is high (Case 4 - 50 kWh)
- Both methods penalize non-movers (0 kWh)
- REEF consistently provides larger incentive to large changes (200 kWh)
- Large REEF may improve conservation incentive payback
Lots of Cases. Lots of Insights.

- Decoupling adjustment allocates lost income based upon current usage.
- REEF is allocated based upon difference from class target.
- REEF rewards conservation that is greater than system average in absolute amounts.
- REEF incentive dwindles as customers converge on mean.
- REEF and decoupling provide same result at mean when mean target used.
- REEF has more impact when feebate is high (e.g., SFV variable charge + feebate > std tariff variable charge).
REEF vs. Decoupling Adjustment – What are your goals?

- Lowest bill for smallest users
- Reward efficient users in a class and penalize higher users
- Encourage absolute conservation
- Encourage relative conservation
- Decrease everyone’s usage vs. individual customer’s usage (shift the mean)
- Encourage any conservation including minimal efforts
- Encourage conservation not subsidized by utility
REEF – Conservation Incentive

- Fees and rebates can be relatively large as they only apply excess or efficient usage.
- Effectiveness of incentive tied to size and design.
- If everyone in class uses about the same amount, feebeates less effective incentive.
- If everyone in class uses about same amount, decoupling takes away savings.
- If mean is not target, size of kWh rebate is subject to change as fees charged change.
- REEF and decoupling have a snooze and lose factor.
Commission Questions

- Impact on low-income customers
 - Protection to smaller users
 - Still need low-income conservation programs to overcome market barriers
- Consumer education is needed for any new rate design
 - Message on bill a good but not sufficient step
- Billing Modifications
 - Algorithm very simple
 - May need to reclassify customers into more homogeneous classes
 - May need to reorganize billing cycles
- Special Pricing
 - Fee always starts by looking at underlying design and desired goals
REEF – Assessment

- Administratively easy – no audits or reconciliation required.
- Flexible
 - Target goal
 - Usage targets automatically refresh based upon current usage
 - Easy to change fees and rebates as no effect on revenue requirement
 - Not constrained by embedded cost revenue requirements
- Is REEF a superior conservation incentive than a tariff with a decoupling adjustment clause? Depends on details.
- REEF may not be easily applied to classes without relatively large number of homogeneous customers
- Goals determines where applicable.
Recap

- REEF not the only solution
- Devil is in the details
- May not be applicable to all classes of customers, but this does not disqualify application to other classes
- Goals and avoidable costs may determine applicability
- Presentation focused on electric. Gas could have similar results depending on targets, avoidable costs and size of fee
- Important that options be discussed in forums like this one
Appendix –
Other Case Details
Case 2

Fee equals Std Tariff Variable-SFV Variable

<table>
<thead>
<tr>
<th></th>
<th>600 kWh</th>
<th>750 kWh</th>
<th>900 kWh</th>
<th>1000 kWh</th>
<th>1250 kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVF Tariff</td>
<td>$74.00</td>
<td>$80.00</td>
<td>$86.00</td>
<td>$90.00</td>
<td>$100.00</td>
</tr>
<tr>
<td>REEF Fee or Rebate</td>
<td>-$10.50</td>
<td>-$5.25</td>
<td>$0.00</td>
<td>$3.50</td>
<td>$12.25</td>
</tr>
<tr>
<td>SVF with REEF</td>
<td>$63.50</td>
<td>$74.75</td>
<td>$86.00</td>
<td>$93.50</td>
<td>$112.25</td>
</tr>
<tr>
<td>Standard Tariff</td>
<td>$60.00</td>
<td>$71.25</td>
<td>$82.50</td>
<td>$90.00</td>
<td>$108.75</td>
</tr>
<tr>
<td>Decoupling Adj.</td>
<td>$2.33</td>
<td>$2.92</td>
<td>$3.50</td>
<td>$3.89</td>
<td>$4.86</td>
</tr>
<tr>
<td>Std Tariff+ Decoupling</td>
<td>$62.33</td>
<td>$74.17</td>
<td>$86.00</td>
<td>$93.89</td>
<td>$113.61</td>
</tr>
</tbody>
</table>
Case 3
Variable Charge in Std Tariff = SFV+Fee & Zero Fixed Charge

<table>
<thead>
<tr>
<th></th>
<th>600 kWh</th>
<th>750 kWh</th>
<th>900 kWh</th>
<th>1000 kWh</th>
<th>1250 kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVF Tariff</td>
<td>$74.00</td>
<td>$80.00</td>
<td>$86.00</td>
<td>$90.00</td>
<td>$100.00</td>
</tr>
<tr>
<td>REEF Fee or Rebate</td>
<td>-$15.00</td>
<td>-$7.50</td>
<td>$0.00</td>
<td>$5.00</td>
<td>$17.50</td>
</tr>
<tr>
<td>SVF with REEF</td>
<td>$59.00</td>
<td>$72.50</td>
<td>$86.00</td>
<td>$95.00</td>
<td>$117.50</td>
</tr>
<tr>
<td>Standard Tariff</td>
<td>$54.00</td>
<td>$67.50</td>
<td>$81.00</td>
<td>$90.00</td>
<td>$112.50</td>
</tr>
<tr>
<td>Decoupling Adj.</td>
<td>$3.33</td>
<td>$4.17</td>
<td>$5.00</td>
<td>$5.56</td>
<td>$6.94</td>
</tr>
<tr>
<td>Std Tariff+Decoupling</td>
<td>$57.33</td>
<td>$71.67</td>
<td>$86.00</td>
<td>$95.56</td>
<td>$119.44</td>
</tr>
</tbody>
</table>
Case 4
Higher Feebate ($0.06)

<table>
<thead>
<tr>
<th></th>
<th>600 kWh</th>
<th>750 kWh</th>
<th>900 kWh</th>
<th>1000 kWh</th>
<th>1250 kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVF Tariff</td>
<td>$74.00</td>
<td>$80.00</td>
<td>$86.00</td>
<td>$90.00</td>
<td>$100.00</td>
</tr>
<tr>
<td>REEF Fee or Rebate</td>
<td>-$18.00</td>
<td>-$9.00</td>
<td>$0.00</td>
<td>$6.00</td>
<td>$21.00</td>
</tr>
<tr>
<td>SVF with REEF</td>
<td>$56.00</td>
<td>$71.00</td>
<td>$86.00</td>
<td>$96.00</td>
<td>$121.00</td>
</tr>
<tr>
<td>Standard Tariff</td>
<td>$60.00</td>
<td>$71.25</td>
<td>$82.50</td>
<td>$90.00</td>
<td>$108.75</td>
</tr>
<tr>
<td>Decoupling Adj.</td>
<td>$2.33</td>
<td>$2.92</td>
<td>$3.50</td>
<td>$3.89</td>
<td>$4.86</td>
</tr>
<tr>
<td>Std Tariff+ Decoupling</td>
<td>$62.33</td>
<td>$74.17</td>
<td>$86.00</td>
<td>$93.89</td>
<td>$113.61</td>
</tr>
</tbody>
</table>