Revenue Neutral Energy Efficiency Feebates

Pubic Utilities Commission of Ohio Workshop Presented by David M. Boonin NRRI Director of Electricity Research & Policy September 17, 2008

Today's Ground Rules

- Discuss the REEF w/o judging the merits of SFV rate design or decoupling.
- Not the opinion of Commissioners, PUC Staff or NRRI.
- Framework presented today may not be applicable to every situation.
- Paper on REEF previously circulated and available at NRRI website.
- Expanded discussion of REEF.

REEF as an Enhancement to SFV

- For contextual purposes, REEF discussed in association with SFV.
- Possible to consider REEF in other rate design environments. Beyond scope of prepared remarks.

What is a REEF?

REEF = <u>R</u>evenue-neutral <u>E</u>nergy <u>E</u>fficiency <u>F</u>eebate

Not aware of usage by gas or electric utilities

What is a REEF? "Revenue-neutral"

- Revenue neutral is from the utility's perspective
- Revenue neutrality is really about income neutrality
- The revenue paid by individual customers is subject to change through fees and rebates
- No change occurs to SFV charge where income is recovered

What is a REEF? "Energy Efficiency"

- "Energy Efficiency" is a place holder for any targeted change in consumption patterns, for example:
 - Curtailing peak demand
 - Encouraging conservation
 - Reducing carbon emissions
- Design of feebate depends on "energy efficiency" goal(s)

What is a REEF? "Feebate"

- Feebate charges some customers a <u>fee</u> while granting others a re<u>bate</u>
- Used and proposed to encourage improved automobile MPG
- Fees are fully distributed as rebates, hence revenue neutrality
- Design of feebate depends on "energy efficiency" goal(s)

Setting The Fee

- Depends on goal. More than one fee if more than one goal
- Look at avoidable or long-term marginal cost
- Can a revenue neutral feebate provide a price signal to avoid costs yet to be incurred
 - New capacity for reliability
 - Resources to reduce price spikes de facto DSR
 - Reduced carbon emissions
- Fee can allow price signals in excess of embedded costs
- Examples indicate that fee needs to be significant to have impact

How a REEF may Improve SFV

- More of a conservation incentive
- More protection of smaller users
- More protection of existing conservation investments
- Looks at avoidable costs versus embedded costs

REEF – Breaking Away from Embedded Cost Rate Design

- Rate designs usually afford utilities opportunity to recover embedded costs
- Including concepts in traditional revenue tariffs such as avoidable costs or long-term marginal costs often disrupts embedded cost- based revenue recovery paradigm
- REEF is revenue neutral so fees and rebates designed as price signals do not disrupt the revenue requirement balance
- REEF allows price signals that are set outside the embedded-cost paradigm

REEF is flexible

- Targets can be set to meet specific goals
- Today's examples focus on general usage (conservation)
- Some other potential REEF targets
 - On peak usage (high wholesale cost of electricity)
 - Off peak usage (carbon from coal plants on margin)
 - Demand (reliability and avoidable capacity)
- Multiple goals possible as long as they do not conflict
 - E.g., off peak usage target and demand target each with their own REEF

REEF Design and Underlying Tariff

- REEF design could depend upon underlying variable charges
 - Real-time pricing
 - Time-of-Day
 - Seasonal
 - Demand charges
 - Increasing block rates
- Today, assuming SFV and comparing to Std Tariff with single block and full decoupling

Need for Technology

- Feebates can be more accurately calculated when AMR technology is installed
 - Avoids problems of estimated bills
 - Same applies for decoupling adjustment
- Feebate design (as is the case with rate design in general) can be constrained by metering technology and customer information systems
 - Demand meters, time-of-day meters, AMI
 - End uses, SIC, square footage

Homogeneous Customer Classes

- Fees and rebates should be kept within a customer class
- Classes should be relatively homogeneous (e.g., electric water heating customers vs. allelectric or commercial versus public schools)
- Feebates as discussed here may not be applicable to all classes of customers
- Options such as normalization should be considered before dismissing possibility (e.g. square feet for commercial retail customers)
- Lack of applicability to some classes is not a reason to dismiss REEF to other classes

REEF adjustment period

Monthly adjustment keeps incentives current.

Annual adjustments have problems

- Changes in customer base
- Potential large fee at year-end
- Lack of current bill to reinforce behavior
- Use of billing period
 - Everyone in cycle has same weather and number of days, weekdays
 - Requires large enough customer class (utility can change billing cycles to consolidate a customer class)

Second best may be all customers billed within a period

- Keep aggregation period short (e.g. 3 days) and retain most of benefits of a single period while increasing the customers in the calculation pool.
- Longer the period, greater the issues of unlike circumstances

Billing

- Potential calculation process
 - Fee established in tariff (e.g., cents/kWh above target usage)
 - Target usage for period calculated per tariff (e.g., system average or 20% above system average)
 - Charge the fee as appropriate
 - Determine revenues generated in period by charging the fee on excess usage to determine total rebate (not necessary if using mean)
 - Determine usage that is eligible for the rebate (e.g., below system average or usage 20% below system average)
 - Credit customers with rebate based total upon eligible usage (same as fee if using mean)
 - Put goal oriented message on the bill

Reconciliation

- Zero sum game.
- Feebate calculations done when all factors are known.
- □ No reconciliation required for REEF.
- Decoupling adjustments require tracking, auditing and reconciliation

Example - Assumptions

Five customers

- Usage target of 1000 kWh (mean)
- Standard Tariff
 - Fixed Monthly Charge: \$15
 - Variable Charge: \$0.075/kWh
- □ SFV Tariff
 - Fixed Monthly Charge: \$50
 - Variable Charge: \$0.04
- REEF Fee
 - \$0.05/excess kWh
- Excess usage=efficient usage as target is mean usage
- All cases assume no change in ROE or operating costs

Example – Start

Customer	#1	#2	#3	#4	#5
Usage	650 kWh	900 kWh	1000 kWh	1200 kWh	1250 kWh
SVF Tariff	\$50.00	\$50.00	\$50.00	\$50.00	\$50.00
	<u>\$26.00</u>	<u>\$36.00</u>	<u>\$40.00</u>	<u>\$48.00</u>	<u>\$50.00</u>
	\$76.00	\$86.00	\$90.00	\$98.00	\$100.00
REEF Fee or Rebate	-\$17.50	-\$5.00	\$0.00	\$10.00	\$12.50
SVF with REEF	\$58.50	\$81.00	\$90.00	\$108.00	\$112.50
Standard	\$15.00	\$15.00	\$15.00	\$15.00	\$15.00
Tariff	<u>\$48.75</u>	<u>\$67.50</u>	<u>\$75.00</u>	<u>\$90.00</u>	<u>\$93.75</u>
	\$63.75	\$82.50	\$90.00	\$105.00	\$108.75

Start Results

- Represents starting point
- Total revenues same in both cases
- Feebate a straight calculation
 - (actual usage-mean usage) x feebate
- Total bill is lower for efficient users and higher for excessive users with REEF than Standard Tariff
 - Assumption dependent

Example - Step 2 Average Consumption Down 100 kWh

Customer	#1	#2	#3	#4	#5
Usage	600 kWh	750 kWh	900 kWh	1000 kWh	1250 kWh
SVF Tariff	\$74.00	\$80.00	\$86.00	\$90.00	\$100.00
REEF Fee or Rebate	-\$15.00	-\$7.50	\$0.00	\$5.00	\$17.50
SVF with REEF	\$59.00	\$72.50	\$86.00	\$95.00	\$117.50
Standard Tariff	\$60.00	\$71.25	\$82.50	\$90.00	\$108.75
Decoupling Adj.	\$2.33	\$2.92	\$3.50	\$3.89	\$4.86
Std Tariff+ Decoupling	\$62.33	\$74.17	\$86.00	\$93.89	\$113.61

21

Step 2 Results

- Each customer conserves a different amount.
- Decoupling adjustment calculated by taking total loss sales (500 kWh) X \$0.035/kWh in income and dividing by total sales (4500 kWh).
- SVF with REEF still lower and higher at ends than Std Tariff.
- Customers who went from old mean of 1000 kWh to new mean of 900 kWh saved \$4 (\$90-86) in each case.
- Customers that saved more (absolute change) than change in mean saved more under REEF.
- Customers who did nothing had \$5 increase under REEF and \$4.86 for Std with decoupling.
- Results are assumption dependent.

Example - Step 3 Average Consumption Rises 25 kWh from Step 2

Customer	#1	#2	#3	#4	#5
Usage	600 kWh	900 kWh	925 kWh	1025 kWh	1175 kWh
SVF Tariff	\$74.00	\$86.00	\$87.00	\$91.00	\$97.00
REEF Fee or Rebate	-\$16.25	-\$1.25	\$0.00	\$5.00	\$12.50
SVF with REEF	\$57.75	\$84.75	\$87.00	\$96.50	\$109.50
Standard Tariff	\$60.00	\$82.50	\$84.37	\$91.87	\$103.13
Decoupling Adj.	\$1.70	\$2.55	\$2.63	\$2.91	\$3.33
Std Tariff+ Decoupling	\$61.70	\$85.05	\$87.00	\$94.78	\$106.46

Step 3 Results

- Bill for mean usage still equal under each tariff
- Decoupling adjustment down because usage is up.
- REEF case 600kWh bill went down w/o change in usage because mean increased.

Case 1 Consumption Down 100 kWh by Everyone

Customer	#1	#2	#3	#4	#5
Usage	550 kWh	800 kWh	900 kWh	1100 kWh	1150 kWh
SVF Tariff	\$72.00	\$82.00	\$86.00	\$94.00	\$96.00
REEF Fee or Rebate	-\$17.50	-\$5.50	\$0.00	\$10.00	\$12.50
SVF with REEF	\$55.50	\$76.50	\$86.00	\$104.00	\$108.00
Standard Tariff	\$56.25	\$75.00	\$82.50	\$97.50	\$101.25
Decoupling Adj.	\$2.14	\$3.11	\$3.50	\$4.28	\$4.47
Std Tariff+ Decoupling	\$58.39	\$88.11	\$86.00	\$101.78	\$105.72

Results – Case 1

- Feebates for each customer unchanged from start as mean usage shifted.
- Decoupling adjustment unchanged as total usage unchanged between Case
 1 and Base Case Step 2

More Cases Change the Design

- Case 2: Fee equals difference between Standard Tariff Variable Charge and SFV Variable Charge (\$0.35)
 - Customer bills equal at base usage in REEF or Std Tariff
- Case 3: No fixed charge in Standard Tariff and Std Tariff variable charge equals SFV variable charge plus fee
 - Customer bills equal at base usage in REEF or Std Tariff
- □ Case 4: Higher feebate (\$0.06)
 - REEF>Standard variable-SFV variable
 - Exceeds embedded cost model

Summary Results Bill Comparison after Change

Customer	#1	#2	#3	#4	#5
Usage	600 kWh	750 kWh	900 kWh	1000 kWh	1250 kWh
Decrease	50 kWh	150kWh	100 kWh	200 kWh	0 kWh
Base REEF	\$59.00	\$72.50	\$86.00	\$95.00	\$117.50
Base Std	\$62.33	\$74.17	\$86.00	\$93.89	\$113.61
#2 REEF	\$63.50	\$74.75	\$86.00	\$93.50	\$112.25
#2 Std	\$62.33	\$74.17	\$86.00	\$93.89	\$113.61
#3 REEF	\$59.00	\$72.50	\$86.00	\$95.00	\$117.50
#3 Std	\$57.33	\$71.67	\$86.00	\$95.56	\$119.44
#4 REEF	\$56.00	\$71.00	\$86.00	\$96.00	\$121.00
#4 Std	\$62.33	\$74.17	\$86.00	\$93.89	\$113.61

28

Bill Comparison Comments

- Mean always the same in these examples
- Cases 2 and 3 converge as start points were equal
- Usefulness of metric depends on goal
- Change in bill may be more useful as conservation incentive

Summary Results Change in Bill Comparison

Customer	#1	#2	#3	#4	#5
Decrease Usage	50 kWh	150 kWh	100 kWh	200 kWh	0 kWh
Base REEF	\$0.50	-\$8.50	-\$4.00	-\$13.00	\$5.00
Base Std	-\$1.42	-\$8.33	-\$4.00	-\$11.11	\$4.86
#2 REEF	-\$0.25	-\$7.75	-\$4.00	-\$11.50	\$3.50
#2 Std	-\$1.42	-\$8.33	-\$4.00	-\$11.11	\$4.86
#3 REEF	\$0.50	-\$8.50	-\$4.00	-\$13.00	\$5.00
#3 Std	-\$1.17	-\$9.33	-\$4.00	-\$12.44	\$6.94
#4 REEF	\$-2.50	-\$10.00	-\$4.00	-\$12.00	\$8.50
#4 Std	-\$1.42	-\$8.33	-\$4.00	-\$11.11	\$4.86

Bill Change Comments

- All changes total to -\$20.00
- No difference at mean
- REEF does not provide as great of incentives for small amounts of conservation as Std Tariff until REEF is high (Case 4 -50 kWh)
- Both methods penalize non-movers (0 kWh)
- REEF consistently provides larger incentive to large changes (200 kWh)
- Large REEF may improve conservation incentive payback

Lots of Cases. Lots of Insights.

- Decoupling adjustment allocates lost income based upon current usage.
- REEF is allocated based upon difference from class target.
- REEF rewards conservation that is greater than system average in absolute amounts.
- REEF incentive dwindles as customers converge on mean.
- REEF and decoupling provide same result at mean when mean target used.
- REEF has more impact when feebate is high (e.g., SFV variable charge + feebate > std tariff variable charge).

REEF vs. Decoupling Adjustment – What are your goals?

- Lowest bill for smallest users
- Reward efficient users in a class and penalize higher users
- Encourage absolute conservation
- Encourage relative conservation
- Decrease everyone's usage vs. individual customer's usage (shift the mean)
- Encourage any conservation including minimal efforts
- Encourage conservation not subsidized by utility

REEF – Conservation Incentive

- Fees and rebates can be relatively large as they only apply excess or efficient usage.
- Effectiveness of incentive tied to size and design.
- If everyone in class uses about the same amount, feebates less effective incentive.
- If everyone in class uses about same amount, decoupling takes away savings.
- If mean is not target, size of kWh rebate is subject to change as fees charged change.
- REEF and decoupling have a snooze and lose factor.

Commission Questions

- Impact on low-income customers
 - Protection to smaller users
 - Still need low-income conservation programs to overcome market barriers
- Consumer education is needed for any new rate design
 - Message on bill a good but not sufficient step
- Billing Modifications
 - Algorithm very simple
 - May need to reclassify customers into more homogeneous classes
 - May need to reorganize billing cycles
- Special Pricing
 - Fee always starts by looking at underlying design and desired goals

REEF – Assessment

Administratively easy – no audits or reconciliation required.

Flexible

- Target goal
- Usage targets automatically refresh based upon current usage
- Easy to change fees and rebates as no effect on revenue requirement
- Not constrained by embedded cost revenue requirements
- Is REEF a superior conservation incentive than a tariff with a decoupling adjustment clause? Depends on details.
- REEF may not be easily applied to classes without relatively large number of homogeneous customers
- Goals determines where applicable.

Recap

- REEF not the only solution
- Devil is in the details
- May not be applicable to all classes of customers, but this does not disqualify application to other classes
- Goals and avoidable costs may determine applicability
- Presentation focused on electric. Gas could have similar results depending on targets, avoidable costs and size of fee
- Important that options be discussed in forums like this one

Appendix – Other Case Details

Case 2 Fee equals Std Tariff Variable-SFV Variable

	600 kWh	750 kWh	900 kWh	1000 kWh	1250 kWh
SVF Tariff	\$74.00	\$80.00	\$86.00	\$90.00	\$100.00
REEF Fee or Rebate	-\$10.50	-\$5.25	\$0.00	\$3.50	\$12.25
SVF with REEF	\$63.50	\$74.75	\$86.00	\$93.50	\$112.25
Standard Tariff	\$60.00	\$71.25	\$82.50	\$90.00	\$108.75
Decoupling Adj.	\$2.33	\$2.92	\$3.50	\$3.89	\$4.86
Std Tariff+ Decoupling	\$62.33	\$74.17	\$86.00	\$93.89	\$113.61

Case 3 Variable Charge in Std Tariff = SFV+Fee & Zero Fixed Charge

	600 kWh	750 kWh	900 kWh	1000 kWh	1250 kWh
SVF Tariff	\$74.00	\$80.00	\$86.00	\$90.00	\$100.00
REEF Fee or Rebate	-\$15.00	-\$7.50	\$0.00	\$5.00	\$17.50
SVF with REEF	\$59.00	\$72.50	\$86.00	\$95.00	\$117.50
Standard Tariff	\$54.00	\$67.50	\$81.00	\$90.00	\$112.50
Decoupling Adj.	\$3.33	\$4.17	\$5.00	\$5.56	\$6.94
Std Tariff+ Decoupling	\$57.33	\$71.67	\$86.00	\$95.56	\$119.44

Case 4 Higher Feebate (\$0.06)

	600 kWh	750 kWh	900 kWh	1000 kWh	1250 kWh
SVF Tariff	\$74.00	\$80.00	\$86.00	\$90.00	\$100.00
REEF Fee or Rebate	-\$18.00	-\$9.00	\$0.00	\$6.00	\$21.00
SVF with REEF	\$56.00	\$71.00	\$86.00	\$96.00	\$121.00
Standard Tariff	\$60.00	\$71.25	\$82.50	\$90.00	\$108.75
Decoupling Adj.	\$2.33	\$2.92	\$3.50	\$3.89	\$4.86
Std Tariff+ Decoupling	\$62.33	\$74.17	\$86.00	\$93.89	\$113.61