Powered Together | 130th NARUC Annual Meeting and Tapping the Water-Energy Nexus | Education Conference

Joint Staff Subcommittees on Rate Design and Energy Resources and the Environment

BEHIND THE METER RESIDENTIAL

Deployment of 10MW/27MWHs of Tesla PW2.0 by summer 2019

* 2000 units.

Fully subscribed. Deployments on track.

Filing to make BTM Storage a tariffed Program

Replace fossil backup generators.

Existing PV owners.

- Low Income, Life Support customers.
- T&D Project Deferral/Elimination.
- Reliability challenged locations.

GMP Personal Reliability		GMP Bring Your Own Device
Tesla Powerwall 2.0	Device	SolarEdge StorEdge Inverter-compatible
GMP	Device Ownershir	Customer
Sivir		Customer
\$15/mth or \$1500 up front	Customer Pricing	from their supplier
built into Customer pricing	Customer Benefit	GMP bill credit based on device size (\$14-\$36/mth range)

STORAGE IN ACTION

- Halloween 2017: New England experienced the equivalent of Category 1 hurricane
- GMP customers in our BTM Storage program were able to ride through the outage duration, some as long as 3 days

RELIABILITY THAT PAYS FOR ITSELF

Powered Together | 130th NARUC Annual Meeting and Tapping the Water-Energy Nexus | Education Conference

Joint Staff Subcommittees on Rate Design and Energy Resources and the Environment

2018 NARUC Annual Meeting Maximizing BTM Storage Value

Jim Baak Senior Manager for Regulatory Affairs, West Jim.Baak@stem.com November 11, 2018

Stem Overview

Stem operates the world's smartest and largest digital energy storage network

Founded: 2009 Headquarters: Millbrae, CA Employees: 150 +CA, HI, NY, TX, MA, Japan, ONT **Operations In:** Pipeline & Installed: 900+ sites, 250+ MWh Installed: 400+ sites, 3.5M+ device hours 8 utility contracts: 350 MWh **Project Finance:** \$650 MM

High Caliber Global Investors

Distinguished Honors & Awards

WORLD ECONOMIC

FORUM

Greentech Media: 2018 Grid Edge Innovation Award SEPA Power Player 2017: Innovative Partner of the Year

Stem's Solution Components

Athena[™] Artificial Intelligence

Automatically controls when energy storage charges and discharges to optimize timing, maximize savings, and create virtual power plants.

Energy Storage Systems

Modular options for all facility sizes and locations. Batteries from leading global manufacturers.

Medium indoor

132 kW modules

Stem's Virtual Power Plants

Energy Superintelligence™

- Stem's network of storage systems can be dispatched as a "Virtual Power Plants" for utilities and grid operators
- Cloud-based AI software automatically optimizes each system to help the customer and the grid at the same time
- Machine learning and big data processing allow software to learn from each event and grow smarter

stem

Multiple Use Applications

Customer - Sited Storage = Range of Values

Source: Rocky Mountain Institute The Economics of Battery Energy Storage, Oct 2015

Value - Stacking for BTM Storage

- Only BTM Storage is capable of providing Customer Value and Grid Value
- Categories of Multiple Use Applications:
 - Time Differentiated
 - Capacity Differentiated
 - Market Differentiated
- Need to determine incremental value

Case Study: Demand Charge Mgmt & Local Capacity

Educate customers on benefits

An EDISON INTERNATIONAL® Company

- - Customer satisfaction

Promote LCR program

Capacity and energy payments for performanceSupport customer

acquisition

- \$0 money down
- Load management
- Automated bill savings

Athena™ Artificial Intelligence Automatically controls energy

storage charge/discharge to optimize timing, maximize savings, and create VPPs.

powered by Sten

- VPP of 85 MW of firm, local, dispatchable capacity
 - Fatigue-less Resource
 Adequacy resource
- Performance based contract

stem

Energy storage system subscription payment

DR Event + Demand Charge Savings (Single Customer)

VPP: Aggregated Dispatch (Multiple Customers)

- Optimized Utility Demand 🔍 Utility Energy Usage 🔍 PowerStore Discharge 🔍 PowerStore Charge … Temperature

- Optimized Utility Demand 🔍 Utility Energy Usage 🔘 PowerStore Discharge 🔘 PowerStore Charge

stem

© 2018 Confidential 16

Storage & PV (Multiple DERs)

Rate Design

Rate Design Principles for DER

- In General, Avoid Resource-Specific Tariffs
- Dynamic Pricing Options
 - Temporally (TOU, RTP, etc.)
 - Locationally (LMP, Options Tariffs, etc.)
- Separate tariffs for services (versus consumption)
 - Energy, Capacity, Ancillary Services (Voltage/Frequency Support)
- Move from Non-Coincident Peak Demand to Coincident Peak
 - Coincident with either system or distribution circuit peak
 - Daily Demand Charges (DER as Non-Wires Alternatives)

Additional Considerations: Distribution Planning & Non-Wires Alternatives

Unlocking Full Value of Storage/DER Requires Paradigm Shift

- Ability to maximize customer & grid value hinges on access to markets
- Traditional resource & grid planning only sees DER as load-modifiers
- New approach to grid planning treats DER as resources that can be leveraged to provide customer & grid value
- To unlock full potential of any 3rd party DER, including energy storage, requires re-imagining the regulatory framework
 - Performance Based Regulation may be a first step in that direction

CA's Distributed Resources Planning (DRP) Approach

- DRP Planning for the Grid
 - Integration/Hosting Capacity Analysis where, what & how much?
 - Locational Net Benefits Analysis
 - Distribution Deferral Opportunities/Non-Wires Alternatives
- Integration of DER (IDER) Sourcing Strategies
 - Focus has so far been IOU procurement
- Utility Grid Modernization
 - Balance IOU investments with 3rd Party DER sourcing
 - Need to avoid over-investment / stranded investments

Utility Investments vs. 3rd Party DER Sourcing

- Moving from utility capital investments to 3rd party software + services sourcing
- DER Sourcing Options:
 - Procurement
 - Pricing/Tariffs
 - Programs
 - Market Mechanisms
- No "one-size-fits-all" approach different needs/timing require different solutions

Additional Background Slides

The Stem Energy Platform – Athena

- Real-time telemetry and multiple external data services stream information to Stem's predictive analytics and optimization engine
- Stem's machine learning algorithms optimize the asset's operations to deliver value for customers
- Provides grid assets for the utility's needs

UTILITY & GRID CONTROL SYSTEMS

stem

Al-driven optimization of customer & grid benefits

- Stem is currently monetizing 7 of the 13 energy storage value streams as identified by the Rocky Mountain Institute in their report "The Economics of Battery Energy Storage"
- In the future, Stem intends to co-optimize and stack these revenue streams as well as expand the scope of available offerings and services
- Only behind-the-meter solutions can address all 13 value streams

Energy Superintelligence

Powered Together | 130th NARUC Annual Meeting and Tapping the Water-Energy Nexus | Education Conference

Joint Staff Subcommittees on Rate Design and Energy Resources and the Environment

HOW CAN BTM STORAGE CUSTOMERS PARTICIPATE IN MULTIPLE SERVICES IN ORDER TO CAPTURE VALUE?

NARUC NOVEMBER 11, 2018

> Lon Huber Head of NA Retail Regulatory Offering

NAVIGANT STORAGE CAPABILITIES & EXPERIENCE

Navigant has assisted developers, vendors, utilities, investors, and government in developing energy storage strategies and implementing projects.

DISRUPTION CREATES OPPORTUNITY

During the next 5-15 years, Navigant expects massive disruption across the entire energy value chain that will affect a broad set of stakeholders

Policymakers, energy companies and utilities must respond to market pressures by developing innovative business models Although policy and regulatory reform is an important driver of transformation – customer

choice, disruptors, and technology innovation are relentless instigators of market change.

As technology hardware costs decline, Navigant anticipates the annual worldwide revenue from energy storage for renewables integration <u>will exceed \$23 billion by</u> <u>2026</u>, with utility-scale and residential applications expected to show the strongest growth.

- Energy storage serves many applications which vary from region to region
- Two pathways:
 - 1. Dedicated, single use case: Single use storage application tend not to pencil on one use case, this will change as deployment accelerates price declines for Li-ion.
 - 2. Multi-use case/value stacking: Most storage deployments in the US have relied on some form of value stacking

Spinning and non-spin Reserves	Distribution Asset Optimization	RE Energy Shifting
Hosting capacity	Transmission Asset Optimization	RE Ramping/Smoothing
Capacity	Frequency Regulation	Demand charge reduction
Energy arbitrage	Voltage/VAR Support	Backup power and reliability

Key Energy Storage Applications

STORAGE IS DIFFERENT

MOST RATE DESIGNS ARE TOO DUMB

• Like using a Swiss Army knife to open a bag of potato chips

RESIDENTIAL RATE DESIGN

NAVIGANT

- Proper price signals should be available as an option
 - Expect dynamic price signals or dispatch calls
- But don't expect mass adoption of advanced rates
- Utilities and third parties need to be involved

SNAPSHOT OF RESIDENTIAL ADVANCED DER RATES (SMART HOME RATES)

Source: Lon Huber, Strategen Consulting

NY REV SMART HOME RATE PILOT:

ConEdison			
Supply Charge		\$ / kWh Hourly NYISO LMP Zones H, I, J	
Embedded Delivery Charge (12p	om-8pm)	\$1.10 / max daily kW	
Coincident Event Incremental to daily demand charge; 24-hr advance notice for events; hours vary by event	Generation	\$11.34 / max event kW	
	Transmission	\$1.15 / max event kW	
	Distribution	\$4.61 / max event kW	
Monthly Customer Charge		\$15.76	
Adjustments and Surcharges		\$ / kWh; includes System Benefit Charge, MAC, RDM, etc.	

Orange & Rockland			
Supply Charge		\$ / kWh Hourly NYISO LMP Zones G	
Embedded Delivery Charge (12p	om-8pm)	\$0.88 / max daily kW	
Coincident Event Incremental to daily demand charge; 24 hr advance notice for events; hours vary by event	Generation	\$7.70 / max event kW	
	Transmission	\$0.95 / max event kW	
	Distribution	\$3.77/ max event kW	
Monthly Customer Charge		\$15.76	
Adjustments and Surcharges		\$ / kWh; includes System Benefit Charge, MAC, RDM, etc.	

LIBERTY UTILITY IN NEW HAMPSHIRE

DEEP DIVE

Is New Hampshire on the verge of battery energy storage history?

A BURNEY

The only question left to be settled is a big one: Should utilities own behind-the-meter batteries?

AUTHOR Herman K. Trabish	small investor-owned utility in New Hampshire may be on the verge of regulatory approval for one of the most ambitious U.S. tests yet of utility-owned, customer-sited battery energy storage
PUBLISHED	Systems.
June 19, 2018	In the process, regulators and stakeholders of the <u>DE 17-189</u>

- Balance between status quo and true cost of service rates
 - Volumetric TOU with utility dispatch to 12CP and 1 CP price signals
- Use cases:
 - Transmission allocation avoidance
 - TOU arbitrage
 - Non wires alternative
 - Backup power
- Goal is to avoid intra-service territory cost shifts and double counting
- ROE adder based on forecast accuracy
- Proposal to allow third party aggregators to perform dispatch and include solar energy
 - Maybe shared savings

41 / ©2018 NAVIGANT CONSULTING, INC. ALL RIGHTS RESERVED

CONTACTS

LON HUBER

Director 928.380.5540 Lon.Huber@navigant.com

WHY NAVIGANT?

	Practical Experience	 Navigant has undertaken >75 projects related to energy storage for utilities, developers, manufacturers and policy makers in the last 10 years Navigant has conducted market entry strategy, market forecasting, M&A support, due diligence, modelling and technology studies
Ş	Thought Leadership	 Our Market Intelligence analysts regularly publish white papers, syndicated reports, and blogs. Since 2017, we published 25 syndicated reports related to energy storage and batteries We regularly speak at industry events on energy storage We have dedicated research services covering grid tied energy storage; distributed energy storage; and advanced battery innovations We produce multiple reports on energy storage technologies and business models which provide in-depth examinations of utility integration strategies, policy and regulatory factors, business and financing models, and a detailed view of the key industry players
	Industry Relationships	 Through our consulting project work and through our Market Intelligence primary research, we have established relationships with stakeholders throughout the industry Our Market Intelligence team executes over 200 industry interviews per year Navigant is active in or has working relationships with all of the major energy storage industry associations such as: the U.S. Energy Storage Association (ESA) and the European Association for the Storage of Energy (EASE)

MAKING THE CASE FOR ENERGY STORAGE

Navigant Offerings	What We Do
Develop Business Case	 ✓ Assess technical and market potential ✓ Define demonstration goals and objectives ✓ Conduct initial cost benefit analysis ✓ Develop use cases
Procurement	 ✓ Develop procurement options and strategy ✓ Develop solicitation documentation (RFP/RFQ) and appendices (technical, protocols) ✓ Administer solicitation process or augment existing Utility evaluation teams
Demonstration Planning	 ✓ Specify equipment capabilities to support use cases ✓ Solicit project partners and vendors ✓ Create monitoring and testing plan ✓ Identify target customer types
Project Execution	 ✓ Oversee equipment installation and commissioning ✓ Manage project schedule and budget ✓ Document lessons learned
Data Collection & Hosting	 ✓ Collect high resolution data ✓ Support online database hosting
EM&V	 ✓ Analyze project data to verify performance ✓ Project impacts of wider deployment ✓ Write demonstration reports
Regulatory Support	 ✓ Define use cases and initial hypothesis for utility ownership ✓ Analyze pilot results and assess costs and benefits ✓ Write report using pilot results to prove hypothesis ✓ Map out what other utilities have done and lessons learned ✓ Support regulatory filings ✓ Serve as expert witness

BRING YOUR OWN BATTERY (BYOB) AND V-DER RATES

- BYOB or BYOD Third party aggregators and utility partnerships
 - Green Mountain Power
 - Liberty New Hampshire (ROE adder based on forecast accuracy)
 - PSEG Long Island
- V-DER rates LMP and cost of service linked rates
- More sophisticated standby rates:

Typical Commercial Utility B	ill	Standby- Con Edison Rider Q
Supply- Flat Rate	¢/kWH	Supply- Day-Ahead Hourly ¢/kWl
Delivery		Delivery
Customer Charge (Fixed)	\$	Customer Charge (Fixed) \$
Energy Charge	¢/kWH	Contract Demand (Fixed- Based on Historic Peak)
Demand Charge (based on highest peak in the billing	\$/ kW g period)	Demand Charge \$/ kW Daily Period 8 am to 10 PM (M-F) Locational 4 hour period based on Substation Peak
Monthly Adjustments	¢/kWH	Monthly Adjustments ¢/kW
Taxes	\$	Taxes \$

Powered Together | 130th NARUC Annual Meeting and Tapping the Water-Energy Nexus | Education Conference

Joint Staff Subcommittees on Rate Design and Energy Resources and the Environment