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1 A perfectly reliable power system would be nearly unobtainable and far too expensive; therefore resource adequacy is about optimizing 
the trade-off between cost and power shortage risk. 

2 NERC defines a reliable power system as having both “adequacy” (our topic) and “operating reliability.” Adequacy is the ability of the 
electric system to supply the aggregate electric power and energy requirements of the electricity consumers at all times, taking into 
account scheduled and reasonably expected unscheduled outages of system components. Operating reliability is the ability of the elec-
tric system to withstand sudden disturbances such as electric short circuits or unanticipated loss of system components. See  
https://www.nerc.com/docs/pc/Definition-of-ALR-approved-at-Dec-07-OC-PC-mtgs.pdf.   

3 Draft CEC Preliminary 2022 Summer Supply Stack Analysis. California Energy Commission, available at https://www.energy.ca.gov/file-
browser/download/3655. 

Introduction
The electric industry is undergoing a significant transi-
tion, decarbonizing production while supporting the 
electrification of the US economy. Key concepts such as 
resource adequacy need to be re-evaluated in the 
context of that transition. Resource adequacy in power 
system planning refers to the state of having enough 
generation capacity online and available to meet cus-
tomer demand almost all the time,1 inclusive of the 
capability to reduce customer load through demand 
response. Resource adequacy is a fundamental compo-
nent of reliability that assures the continuous, undis-
rupted operation of the electric system in real-time.2 
Planning for power system resource adequacy, once a 
relatively straightforward engineering calculation, is 
now characterized by growing complexity and uncer-
tainty in both supply and demand. The demand side is 
changing with the growth of electric vehicles (EVs), 
heat pumps, new types of demand response resources, 
and rooftop solar and storage. On the supply side, power 
grids are evolving rapidly from a system served by dis-
patchable resources to one reliant on variable energy 
resources (VERs) and duration-limited storage. In the 
face of increasing complexity, many of the tools power 
system planners relied on are now becoming obsolete. 

In the new era of high penetration renewable grids, 
power system reliability models must include the im-
pact of weather as a driver of energy generation. These 

models should also address correlations in production 
output between different VERs, storage state-of-charge 
limitations, and common mode failures such as the risk 
of freezing coal piles and natural gas equipment during 
adverse weather conditions. In addition to adapting to 
these changes, policy makers, regulators, and power 
system planners should also anticipate impacts to 
resource adequacy in the face of a changing climate, 
with more frequent extreme weather events and natu-
ral disasters. According to the California Energy Com-
mission, “with climate change, extreme weather events 
that were previously considered low probability events 
must be accounted for in electric sector planning.”3 In 
other words, climate change increasingly means one 
cannot simply look to the past to understand the ongo-
ing impacts of extreme weather events. 

With the changes wrought by energy resource transi-
tion and a changing climate, the key to modern re-
source adequacy planning is capturing the influence of 
meteorology on power system operations, including 
the relationships between weather, load, renewable 
generation, and forced outages, as well as simulating 
how system elements perform in relation to each other. 
Power system planners may also benefit from leverag-
ing climate models to capture projected climate 
change impacts such as increasing frequency of ex-
treme weather events. 

https://www.nerc.com/docs/pc/Definition-of-ALR-approved-at-Dec-07-OC-PC-mtgs.pdf
https://www.energy.ca.gov/filebrowser/download/3655
https://www.energy.ca.gov/filebrowser/download/3655
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This paper briefly reviews resource adequacy planning 
concepts and recommends modeling tools and tech-
niques needed to build the reliable and resilient power 
system of the future. 

Traditional Resource Adequacy Planning
Electric utilities have used the resource planning pro-
cess for decades to develop long-term, least-cost gen-
eration supply plans to serve expected customer 
demand. Resource adequacy planning ensures that a 

4 The actual term used by the National Energy Reliability Council (NERC) is “reference margin level”; however, it is nearly universally called 
“reserve margin” and we maintain that phrasing. 

5 Pechman, C. Whither the FERC, National Regulatory Research Institute. January 2021, available at http://pubs.naruc.org/
pub/46E267C1-155D-0A36-3108-22A019AB30F6. 

system has enough energy generation throughout the 
year to serve demand with an acceptably low chance of 
shortfalls. Resource adequacy is measured by the met-
rics described in Figure 1. Reliability metrics provide an 
indication of the probability of a shortfall of generation 
to meet load (LOLP), the frequency of shortfalls (LOLE 
and LOLH), and the severity of the shortfalls (EUE and 
MW Short). 

The industry has traditionally framed resource ade-
quacy in terms of procuring enough resources (primar-
ily generation) to meet the seasonal peak load forecast, 
plus some contingency reserves to address generation 
and transmission failures and/or derates in the system.4 
This approach and the metric used to define it is called 
the “reserve margin.” Planners establish a reserve mar-
gin target based on load forecast uncertainty and the 
probability of generation outages. Required reserve 
margins vary by system and jurisdiction, but planners 
frequently target a reserve margin of 15 percent to 18 
percent to maintain resource adequacy. Figure 25 
shows the standard conceptualization of a load dura-
tion curve, rank ordering the level of a power system’s 
load for each hour of the year from highest to lowest on 
an average or median basis in a typical weather year. 
The installed reserve margin is a margin of safety to 

Figure 1: Standard outputs 
from resource adequacy 

models.

• Loss of Load Probability (LOLP) – The probabil-
ity of an event where load exceeds available 
generation resources.

• Loss of Load Expectation (LOLE) – The expected 
number of days where load cannot be met with 
available generation resources. 

• Loss of Load Hours (LOLH) – The expected 
number of hours where load cannot be met 
with available generation resources. 

• Expected unserved energy (EUE) – The ex-
pected amount of load, in MWh, that cannot be 
met with available generation. 

• MW Short – The largest shortfall from inade-
quate generation resources.

• Effective Load-Carrying Capacity (ELCC) – The 
expected capacity contribution from variable 
renewable resources, usually as a function of 
the penetration of a renewable technology, in a 
power system.

Figure 2

Figure 2: Reserve margin above the expected peak 
load hour

http://pubs.naruc.org/pub/46E267C1-155D-0A36-3108-22A019AB30F6
http://pubs.naruc.org/pub/46E267C1-155D-0A36-3108-22A019AB30F6
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cover higher than expected load and/or unexpected 
losses in generation capacity due to outages. 

As we discuss later, the peak load hour, either on a hot 
summer day or a cold winter morning, is not necessarily 
the riskiest time for a renewable heavy power system. 
Every hour of the year must now be studied carefully, 
given the uncertainty about whether renewable 
resources will be able to generate when needed.   

Today, most resource planning analyses rely on the “one 
day in ten years,” criteria, meaning that load does not 
exceed supply more than 24 hours in a 10-year period, 
or its equivalent metric of 2.4 hours loss of load hours 
(LOLH) per year. This analysis is performed at the “bal-
ancing authority” (BA) level. Traditionally, BAs were 
vertically integrated utilities with defined service terri-
tories. Modern independent system operators (ISOs) or 
regional transmission operators (RTOs) have created 
larger BAs that comprise many utility services territories 
and create market or compliance-based rules to main-
tain sufficient system capacity. BA’s typically conduct 
resource adequacy analysis based on their own load 
and resources. Resources are either located within its 
geographic region or have firm transmission 

deliverability into the BA territory. In other words, it is 
not considered prudent planning to assume your 
neighbor can assist you in tight conditions when their 
systems are also likely to be stressed. In real-life opera-
tions, BAs can and do receive assistance from other BAs 
if they have capacity to spare. 

The standard metrics shown in Figure 1 are generally 
reported as mean values of simulated power system 
outcomes over a range of potential future states, but 
planners also need to understand and plan for the 
worst-case outcomes and associated probability of 
such outcomes. Figure 3 shows the mean and percen-
tile values for loss of load hours for a power system over 
a three-year period. 

In Figure 3, on average, the power system is resource 
adequate, remaining below the target of 2.4 hours per 
year. However, if the power system planner were more 
risk averse, she might want to bring a higher percentile 
line under the 2.4-hour target. She would need to add 
more firm capacity, adding to customer cost. The 95th 
percentile is the worst-case outcome, providing addi-
tional information on the upper bound risk of outages 
for a given portfolio. Only power systems with no 

Figure 3

Figure 3: Loss of load hours plot showing the mean values by year along with the range of possible loss of load out-
comes based on the uncertainty in the model.
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recourse to import energy in a shortage, such as an 
island, would consider planning to the 95th percentile 
due to its high cost.  

Resource adequacy planning is fundamentally con-
cerned with low probability events and planning for 
average outcomes; although a common practice, this 
planning is not sufficient and increasingly risky with 
more uncertain supply, such as renewables. In the past, 
planners only needed to worry about unusually high 
loads or high forced outages. Now, they must worry 
about unusually high loads during periods of unusually 
low renewable output and limited storage duration. 
Adding supply uncertainty and, as we discuss later, 
more extreme weather, compounds risks and thus 
requires a fundamental rethinking of planning for low 
probability, high impact tail events.  

In the planning process, the annual values of LOLH/
LOLE, EUE, etc. provide useful information for resource 
procurement decisions. Annual and seasonal outputs 
matter because they can guide planners in identifying 
resource needs. Resource planners also need to know 
the duration of the shortfall, i.e., whether the risk of 
shortfalls occurs over many consecutive hours or con-
centrates among a few hours. Figure 4 shows a “heat 
map,” a color-coded visualization displaying the aver-
age risk of resource shortfalls by month (y-axis) and 
hour (x-axis). Understanding the risk of failing to meet 
load will assist planners in identifying the resources 
needed to maintain resource adequacy.

The heat map, which shows a utility service territory in 
California with heavy solar penetration, demonstrates that 
risk is not equal across all hours. The highest risk occurs in 
the late evening (about 10:00 PM) in September after 
sunset. Before the increased reliance on solar generation, 
resource adequacy risk was concentrated in the early 
afternoon when load peaked. With high solar penetration, 
the change in net load (load less renewable generation) 
shifts the risk to the evening, a phenomenon known 
colloquially as the “head of the duck.” Rather than simply 
planning for “peak hour,” the balancing authority must 
now address a risk profile spanning from June through 
October and occurring primarily after the sun sets. 

Problems with Traditional Resource Plan-
ning with a High Renewable System
With weather emerging as a fundamental driver of 
power system conditions, planning for resource ade-
quacy with high renewables and storage becomes an 
exercise in quantifying and managing increasing uncer-
tainty on both the supply and demand side of the 
equation. On the load side, building electrification, 
electric vehicle adoption, and expected growth in 
customer-sited solar and storage are likely to have 
pronounced effects on future electric consumption. 
Uncertain load growth and changing daily consump-
tion patterns increase the challenge of making sure 
that future resources can serve load around the clock. 
Simply modeling future load based on past load with 
added noise does not characterize uncertainty from 
demand side changes.

Figure 4

Figure 4: LOLH values displayed in a heat map showing risk by month and hour. Note the table disaggregates annual 
LOLH over the months and hours as shown. Hourly LOLH values sum to the annual value.

LOLH By Month Hour
HE01 HE02 HE03 HE04 HE05 HE06 HE07 HE08 HE09 HE10 HE11 HE12 HE13 HE14 HE15 HE16 HE17 HE18 HE19 HE20 HE21 HE22 HE23 HE24

Jan 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Feb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Apr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
May 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Jun 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0.04 0.06 0.15 0.11 0.14 0.15 0.12 0.04
Jul 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0.05 0.05 0.08 0.11 0.14 0.14 0.11 0.02
Aug 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0.01 0.02 0.03 0.04 0.09 0.12 0.15 0.18 0.12 0.02
Sep 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0.09 0.13 0.17 0.23 0.29 0.29 0.18 0.03
Oct 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0.03 0.03 0.04 0.01 0
Nov 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Dec 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Supply-side changes from systems consisting of mostly 
dispatchable resources to systems comprised mostly of 
resources with limited to no dispatchability lead to the 
need for modeling supply in a probabilistic manner. Prior 
to the energy transition underway, most supply uncer-
tainty came from forced outages of thermal resources. 
Because variable renewable energy now contributes most 

of the uncertainty in supply, power supply uncertainty 
cannot be accurately captured with legacy tools using 
average annual profiles to represent renewable resources.  

To explain these emerging gaps in reliability modeling, 
we evaluate past approaches versus current needs 
against the modeling components shown in Table 1.

Table 1: Comparison between modeling approach and needs 
for resource adequacy analysis

Modeling 
Component

Past Approach Limitation Current Need

Weather 
(especially 
temperature)

Not included. Ignores principal variable for 
supply and load

Incorporated as a structural 
variable driving system de-
mand, renewable generation, 
and available thermal capacity

Climate 
Impacts 

Not included. Ignores likely changes in ex-
treme heat and cold events

Adjusting weather simulations 
aligned with climate models

System 
Demand

Create average “8760” load 
profile based on history, 
scale profile to meet a 
high, medium, and low 
future peak demand.

Masks variability of load and 
assumes every year is “normal.”

Generate multiple load simu-
lations using historical load 
and weather data. Adjust 
simulations to match future 
expectation of load growth 
and load patterns

Behind-the- 
Meter 
Resources

Not included. Load will have substantially 
different shapes and behavior 
with electric vehicles, custom-
er-sited solar and storage, and 
heat pumps.

Simulate load components for 
future expectations of DERs. 

Renewable 
Generation

Create average “8760” 
generation profile based 
on history, scale profile to 
meet a high, medium, and 
low future expected 
generation.

Understates variability in 
production and relative pro-
duction dynamics of renew-
ables under extreme demand 
conditions

Generate multiple renewable 
generation simulations using 
historical generation and 
weather data. Scale simula-
tions to meet future expected 
builds. Maintain correlation 
between renewables and load.

Thermal 
Generation

Simulated forced outages 
occur randomly through-
out the modeled time 
horizon.

Does not include correlated 
effect between extreme 
weather and forced outages 
on thermal generation.

Simulated forced outages 
occur randomly, but correlated 
to weather, throughout the 
modeled time horizon.

Energy 
Storage

Not included or used crude 
heuristics to estimate the 
available capacity depend-
ing on system conditions.

Inconsistent with actual oper-
ations of storage and supply 
contribution.

Dispatch simulation that man-
ages storage levels to mini-
mize load shedding.

Transmission Not included. Neglects vulnerability of sys-
tem that grows to depend on 
more imported energy from 
renewables.

Dispatch simulation that in-
cludes transmission limits and 
possible derates.
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Updating Reliability Planning for a New 
Energy Paradigm
Figure 5 shows an approach that includes the core com-
ponents of the new energy paradigm: meteorology, 
variable renewable energy generation, forced outages, 
and energy limited storage. Weather, primarily in the 
form of temperature, but potentially including insola-
tion, humidity, wind speed, etc., drives simulations of 
renewable generation and customer load. Generation 
outage simulations can be modeled as random (the 
traditional approach) or as correlated with extreme heat 
or cold events. Once the simulations are in place, models 
can compute multiple future paths on an hour-by-hour 
basis to determine when load cannot be fully served 
with the available resources. For every hour of the model 
time horizon, there are independent simulations of load, 
renewables, and forced outages to determine if load 
shedding must occur. If a particular model contains 100 
simulations and four show a lack of resources to serve 
load for a particular hour, the hour in question would 
have a loss of load probability of 0.04 (4/100).

Energy storage presents a unique challenge in re-
source adequacy models. Unlike traditional resources, 
storage devices such as batteries, compressed air, or 
pumped-hydro act as both load and generation de-
pending on whether they are charging or discharging. 
Modern resource adequacy models need to simulate 

this behavior when determining the capability of en-
ergy storage to serve load during periods of resource 
scarcity. What state of charge should we expect for 
energy storage at times when the storage is truly 
needed? Are batteries likely to be fully charged at 6:00 
PM on a weekday in August? What about grid charging 
versus closed systems where batteries must charge 
from a renewable resource? At the high end of renew-
able penetration, how much storage would be required 
to cover Dunkelflaute, the “dark doldrums,” that occur in 
the winter when wind ceases to blow for several days. 
Questions surrounding the effective load-carrying 
capability of energy storage significantly increase the 
complexity in modeling resource adequacy.

Dispatch models may be a useful way to estimate the 
contribution of storage under the full range of future 
conditions.  

Figure 6 provides an illustration of modeling the use of 
batteries in resource adequacy. The figure shows bat-
tery storage in blue, load in orange, and the available 
thermal generation in grey. When load exceeds thermal 
generation, the system is forced to rely on battery 
discharge for capacity. If the event lasts long enough to 
fully discharge the battery, the green line (generation 
minus load) will turn negative, indicating a load shed 
event. 

Figure 5

Figure 5: Overview of modern resource adequacy model components.
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Although transmission capacity is not a traditional 
topic in resource adequacy analysis, this is changing 
due to increasing reliance on renewable resources 
located far away from load centers. Models may thus 

need to include representations of transmission lines 
that add congestion and derates that limit the ability of 
remote resources to transmit power to load centers, as 
depicted in Figure 7.

Figure 7 shows a model containing 
multiple load pockets separated by 
transmission corridors which requires 
the ability to allocate capacity across 
multiple regions. The allocations 
should occur in a manner that mini-
mizes unserved energy across the 
combined region. 

Importance of Simulations in 
Resource Adequacy Models
Resource adequacy models are typi-
cally framed as a probabilistic analy-
sis, since the conditions that lead to a 
shortage of generation to meet load 
are associated with low-probability 
extreme events. Monte Carlo simula-
tions are well-suited to solve com-
plex probabilistic questions such as 
those used for resource adequacy 
analysis, because they provide a 

Figure 6

Figure 6: Battery dispatch in resource adequacy model. Author’s illustration 

Figure 7

Figure 7: Transmission network model for resource adequacy studies 
with multiple loads and resources separated by transmission lines.
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calibrated distribution of outputs corresponding to the 
combination of inputs used. Algorithms constructed for 
such methods solve thousands of times with each 
solution using random draws for variables in the model 
to generate combinations of load, renewables, and 
forced outages, resulting in a wide range of outcomes 
to determine the risk of capacity deficits. 

Simulations of random variables fit Monte Carlo meth-
ods by creating multiple future time series of the ran-
dom variables, while maintaining correlation across 
time within variables (if wind is high in hour 1, it will 
likely be high in hour 2) and correlations between the 
variables, such as the strong relationship between 
temperature and load. If wind tends to be higher in the 
spring and fall, the simulations will exhibit that trend. 
Monte Carlo applications differ dramatically between 
resource adequacy models, with some models using a 
sequential approach that solves the model in hourly 
steps whereas others use techniques that solve the 
models quickly without stepping through each hour. 
Accurate representation of energy storage in resource 
adequacy models necessitates sequential solution 

techniques to account for the time dependencies for 
storage state of charge inherent in models. 

The range of values covered in simulations captures future 
uncertainty in the simulated variables. Figure 8 shows 10 
simulations of load derived from historical data. The load 
is highly variable and uncertain in the afternoon, driving a 
wider range of values in the simulations, while nighttime 
load is more certain, as indicated in the simulations. 

Traditional models used average or typical time profiles 
of load and renewables while focusing on generator 
outages as the primary source of uncertainty, greatly 
underestimating the risk of load shedding. Consider the 
chart in Figure 9 showing wind generation for a 25 MW 
farm over the first week of July in 2017, 2018, and 2019. 
The average values from the three years provide a 
profile that does not capture the true volatility seen in 
each individual year. 

When using the Monte Carlo approach with weather as 
a fundamental driver, individual simulations represent 
independent futures for weather, load, and renewables. 

Figure 8

Figure 8: Load simulations over the course of a week.
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Realistic simulations maintain the 
statistical properties of the underly-
ing resource and correlation be-
tween resources and load. For 
example, if historic data show no 
correlation between load and wind 
generation, the simulations should 
maintain this relationship unless a 
reasonable expectation exists for 
correlations to change in the future. 

Figure 10 shows four potential 
correlation scenarios. 

In the top left quadrant, two wind 
farms have high correlation in 
hourly production. The top right 

Figure 9

Figure 9: Actual and average wind generation for the same week over 
three different years.

Figure 10

Figure 10: Scatterplots showing historical correlation (green dots) is maintained in the simulations (black dots) for (a) 
highly correlated wind farms, (b) low correlated wind farms, (c) load and wind, and (d) solar farms.

(a) (b)

(c) (d)
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quadrant displays output for two wind farms that are 
located further apart with no correlation between 
them. Load and a wind farm are displayed in the bot-
tom left quadrant for historical and simulated data. The 
lower right quadrant shows the correlation of two solar 
farms. In each case, the simulated data (green dots) 
maintain the correlated production across resources. 
Models that fail to replicate the proper correlation 
between wind, solar, and load can underestimate the 
risk of load shedding. For example, if wind resources 
are not correlated with load, models relying on average 
wind and average load profiles could mischaracterize 
this relationship and completely misrepresent the 
system net load, which must be served with dispatch-
able resources. 

Tools and Techniques to Model Resource 
Adequacy in a High Renewables Grid
The following criteria help ensure that resource ade-
quacy models can provide valid risk assessments in 
planning decisions:

1. Simulate random variables as weather dependent

2. Benchmark simulations against historic data

3. Model generator outages as weather driven

4. Scale simulations to match future expectations

5. Include climate effects in simulations 

Simulation of random variables
Capturing system dynamics in a realistic manner requires 
the use of simulations for weather, load, renewables, and 
forced outages. Average profiles do not capture the 
fidelity of behavior observed in power systems. Random 
draws from predefined probability distributions also fall 
short as load and renewables, as they neither maintain 
temporal correlations nor provide adequate representa-
tion of the real-world variables. 

Benchmarking simulations of future states 
against history
Benchmarking key variables against historic data using 
simulation techniques helps to assure validity. Bench-
marking includes testing that simulations and historical 
data align in terms of statistical properties such as 
probability distributions, standard deviation, and cor-
relations between variables. The model’s ability to 
represent realistic conditions depends on simulations 
resembling historical data as much as possible. Al-
though this serves as a foundation for the analysis, the 
analyst may also choose to modify the simulation to 
account for climate change impacts in subsequent 
sensitivity analyses (as discussed later). Figure 11 com-
pares percentiles from the historical distribution to 
percentiles from simulations in the left pane. The right 
pane compares standard deviations and coefficient of 
volatility between historical data and simulations. In 
both graphs, the summary statistics of historical data 

Figure 11

Figure 11: Monthly wind generation stats from historical data and simulations. Historical and simulated stats align 
well indicating the model is properly simulating wind generation.
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align with simulations and indicate that the models 
provide a good representation of the items. 

Including Correlations in Generator 
Outages
Generator outages have traditionally been modeled as 
a random occurrence of equal probability all year long. 
The 2021 Winter Storm Uri demonstrated the impact of 
extreme weather events on entire classes of resources, 
for example, the impact of frozen equipment limiting 
fuel delivery and putting thousands of megawatts of 
natural gas capacity on outage simultaneously. This is 
known as a “common mode” failure in which a common 
root cause can impact both the generation equipment 
itself and the “upstream” infrastructure, such as fuel 
extraction, processing, and delivery systems. Another 
common mode failure may occur during extreme heat 
events, which tend to reduce thermal generator heat 
rates, derate power lines, increase fire risk to power 
lines, and spike load all at the same time. Models that 
assume forced outages occur with equal probability 
across all hours, with probabilities for each generator 
modeled independently, will likely underestimate the 
propensity of outages to occur simultaneously. Figure 
12 provides an example of generation simulations with 
weather driven outages where the period with 

minimum temperatures near zero degrees Fahrenheit 
corresponded with the lowest available generation. 

Simulations Should Include Future Impacts 
from New Demand Side Technologies 
System load is expected to grow annually based on 
projected population and economic growth, building 
electrification incentives, and electric vehicle adoption. 
Future drivers of load growth will evolve over time and 
should be explicitly included in the simulations. Model-
ing each load type individually and layering them will 
capture future changes in the load shapes across the 
day and seasons. Matching future expectations allows 
simulations to evolve further into the future based on 
projections and recent trends. Simulations should align 
with historical data in the near term, while adjusting to 
projections in the mid to long term. 

Planning Reliability for a Changing Climate 
Climate change effects are a critical consideration in all 
infrastructure planning. When planning for an ade-
quate system, climate impacts are especially important 
to consider. Although historic data provides a good 
indicator of the relationship between load and tem-
perature, the expectation of more frequent extreme 
weather events in the future can and should be taken 

Figure 12

Figure 12: Available generation capacity drops during extreme cold weather
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into account in a modeling con-
struct. To account for this, weather 
simulations should cover a wider 
range of temperatures than the 
historical data they are based on. 
This can be accomplished by 
running sensitivity cases in which 
simulation model parameters such 
as average temperature and stan-
dard deviation are increased to 
produce a wide range of future 
weather outcomes. Figure 13 
shows the results of load simula-
tions, with the blue dots showing 
load over the range of tempera-
tures observed historically and the 
brown dots showing a wider 
range of temperatures than his-
tory would suggest. 

Extreme weather can deliver a 
double whammy: weather-cor-
related generation outages cou-
pled with load spikes, especially in 
a future with more electric heat-
ing. The result from a modeling 
perspective is that including ex-
treme weather increases LOLE/
LOLH by an amount that should 
raise flags for resource planners. 
Figure 14 shows two LOLH results, 
one from a model that assumes a 
higher risk of extreme weather 
and another that assumes future 
weather is the same as past 
weather. The higher LOLH values 
are strictly a result of weather 
uncertainty from climate change.

Conclusion
The electric grid is transitioning 
quickly from a system of large, 
dispatchable generators to a 
system reliant on high levels of 
variable renewable energy, energy 
storage, and bi-directional flow. Against this backdrop, 
analytical tools used for decision making regarding 
resource adequacy are more important than ever and 
those tools need to evolve to meet the modern grid 

challenges outlined in this paper. Models based in 
realistic weather-driven simulations more accurately 
capture the risk of load shedding due to inadequate 
generation. Simulations derived from historical data 

Figure 13

Figure 13: Adding extreme weather simulations to a model pushes the load 
simulations higher on hot and cold days that would not be considered if 
load is based solely on historical data.

Figure 14

Figure 14: LOLH values increase when simulated weather includes higher 
volatility.
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ensure models include load and generation patterns as 
well as correlations among resources and the ability to 
adjust to future climate conditions. Models that do not 
account for these factors may lead to decisions that 
underinvest in resources or invest in the wrong re-
sources. Recent events in California and Texas indicate 
the importance of getting these projections right to 
keep the grid reliable. 

To model resource adequacy in future power systems 
with high penetration of renewables, we recommend 
several enhancements in modeling tools and tech-
niques. Modeling tools should simulate key structural 

variables and allow for validation of the simulations by 
benchmarking against the historical data used to create 
the simulations. While maintaining statistical properties 
derived from historical data, simulations should also 
include future expectations of load growth along with 
changes in seasonal and daily load shapes. Genera-
tion-forced outage simulations should include the 
possibility of correlated outages from extreme weather. 
Finally, climate change will drive more weather events 
in the power system and this risk should be accounted 
for in the models, at least in the form of sensitivity cases 
or stress tests. 
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