

Winter Committee Meetings

Staff Subcommittee on Rate Design

Introduction to Blockchain

Agenda

Topic

What's all the fuss about?

What is a blockchain?

Application for power and utilities

APPENDIX

Everyone's (still) talking about blockchain...

"You should be taking this technology as seriously as you should have been taking the development of the Internet in the early 1990s." — Blythe Masters, CEO of Digital Asset Holdings

" ... whether it is the virtual currency or the services around, virtual currencies [based on distributed ledgers] do have the promise of changing the world."

– Vikram Pandit, ex CEO Citigroup

"The revolution will not be televised. It will be cryptographically time stamped on the block chain."

– Dominic Frisby, Author of Bitcoin – the Future of Money

"The blockchain protocol threatens to disintermediate almost every process in financial services."

- World Economic Forum

"The technology behind bitcoin could transform how the economy works."

– The Economist

"In lots of areas, it looks like the blockchain will work and it is easy to see how it could revolutionise finance." — Rhomaios Ram, Head of Product Management Deutsche Bank Global Transaction Banking

"Our analysis suggests that distributed ledger technology could reduce banks' infrastructure costs attributable to cross-border payments, securities trading, and regulatory compliance by between \$15-20 billion per annum by 2022."

- The Fintech 2.0 Paper: Rebooting Financial Services

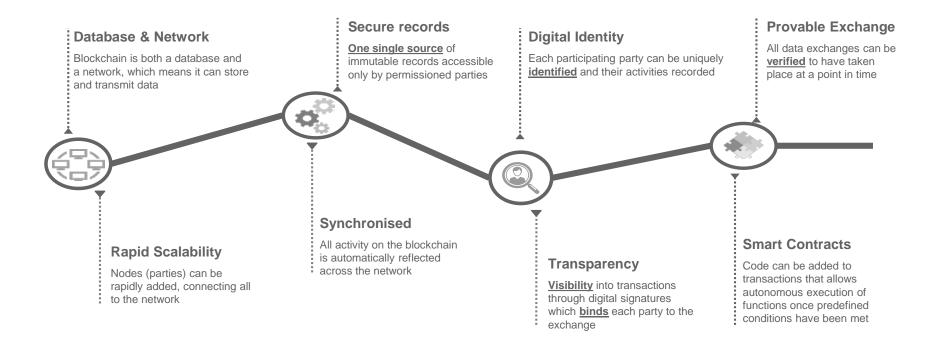
If you take just one thing away today....

Bitcoin = Ølockchain

- Blockchain is a technology that enables a secure, distributed ledger of transactions
- Bitcoin is just one particular use of this technology to create a new "crypto currency"

Things are moving VERY quickly

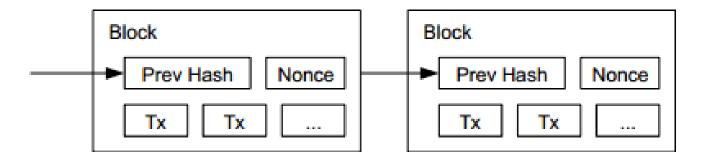
In 7 years, blockchain has moved from a conceptual paper to gaining significant real-world attention and investment.



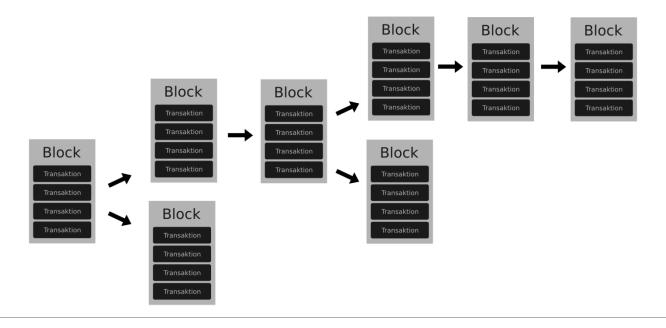
Blockchains as we know them today have had their own evolutionary process

2007-2010	2011-2013	2013 - 2015	2015-2017	2017+
 Satoshi Nakamoto releases white paper on Bitcoin Bitcoin was released and the first exchange was opened 	 Major challenges with Bitcoin surfaced and Bitcoin becomes a currency associated with crime Growing trend emerges to determine the use of blockchains 	 Various regulators including FinCEN, and NY Fed issue direction Banks initiate early adoption and review of digital currence Banks initiate large scale initiatives in use of blockchar R3 develops a consortium a more than 25 leading global banks join the consortium in blockchain in 2 months New blockchain-like distribud databases emerge collective Distributed Ledgers 	 technologies and use cases are going into production. Several number of use cases in banking are established Digital currencies are in heavy use in some parts of the world Banks are expected to review the use cases in various lines of business Early adoption through experiments likely to include new business areas 	
		Bitcoin		
			Blockchain	
			Distributed Ledger	

History is fun and all, but how do blockchains actually work in practice?


A blockchain is a distributed infrastructure technology held collaboratively, which enables a decentralized exchange of trusted data. It uses cryptography to allow each participant on the network to manipulate the ledger in a secure way, without the need for a central authority.

A blockchain


- A distributed, secure, peer-to-peer ledger
- Everyone in the network can hold a copy
- **Contains** *viable* (proven, authenticated) transactions
- Cryptographic proof is used to validate transactions
- Transactions are grouped into blocks by all members of the network
- Hashes link the blocks, creating a chain

(The chain cannot be modified or the hashes will no longer be valid)

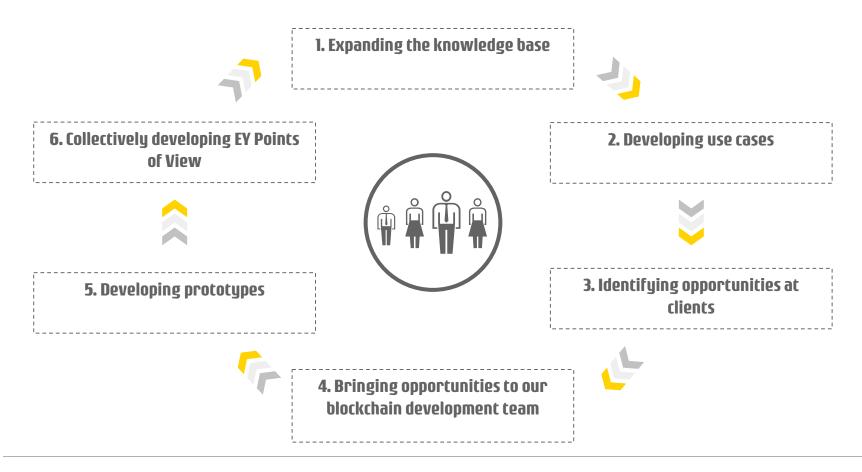
Building the chain

- Anyone in the network can add a block to the chain (any copy of the distributed ledger)
- > New blocks must then be validated by others to be *valid blocks*
- Conflicts will occur and need to be resolved
- The longest chain rule (Bitcoin)

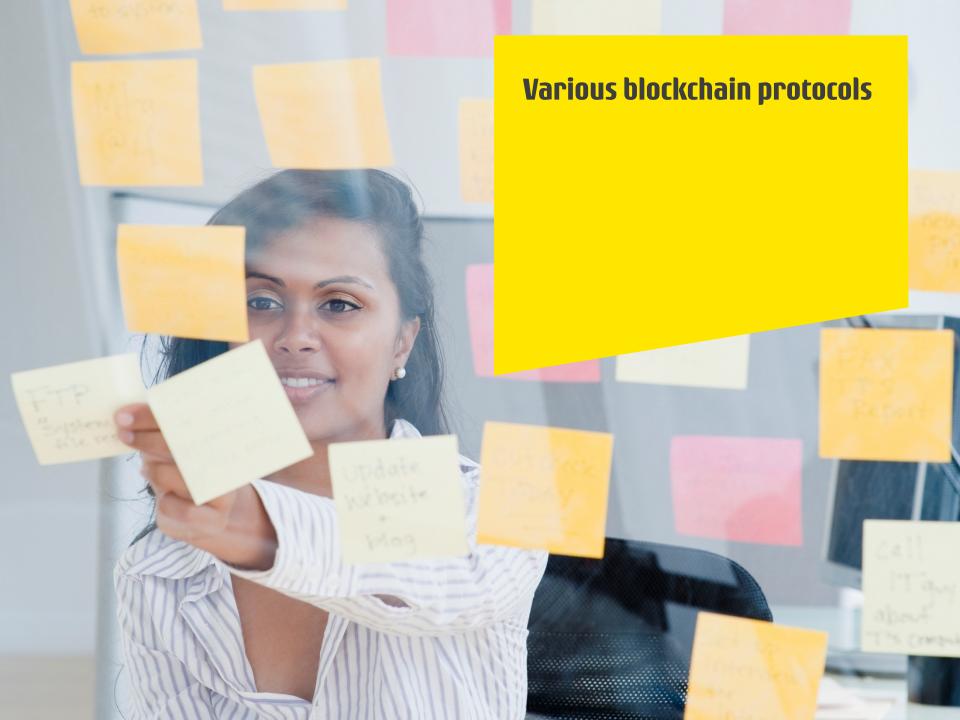
What does it look like

Block			Implicit balances			
number	Action	What it looks like in the blockchain	A	В	C	G
0	Starting balances	N/A	10	10	0	0
1	Alice initiates a 5BTC transaction to Gary Bob initiates a 2BTC transaction to Gary	A,G,5,[A's signature] B,G,2,[B's signature]	5	8	0	7
2	Gary initiates a 3BTC transaction to Carrie Alice initiates a 2BTC transaction to Bob	G,C,3,[G's signature] A,B,2,[A's signature]	3	10	3	4
3	Carrie initiates a IBTC transaction to Alice	C,A,1,[C's signature]	4	10	2	4

- Transactions are sent when the sender signs a transaction, which proves that they own the tokens that they are trying to transmit
- The blockchain is stored amongst many computers; consequently, any changes to a block not agreed on by a majority will be rejected
- In advanced blockchains, tokens may contain different types of data, and addresses may store code that can be executed when a token is sent to them

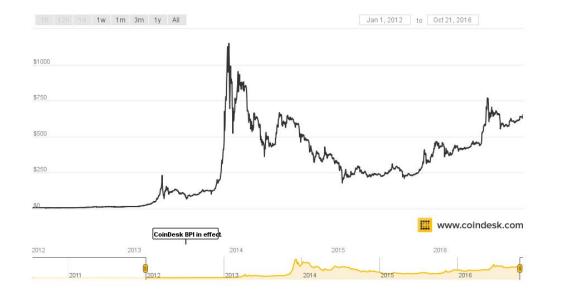

How does this solve our problems?

- Trust resolved, as we now have proof of a digital identity which is distributed around the network and validated by many parties
- Proof proof of work / proof of value based on multiple entities validating transactions using cryptographic techniques and reaching a consensus
- Digital uniqueness a distributed ledger based on a cryptographic chain is almost impossible to forge



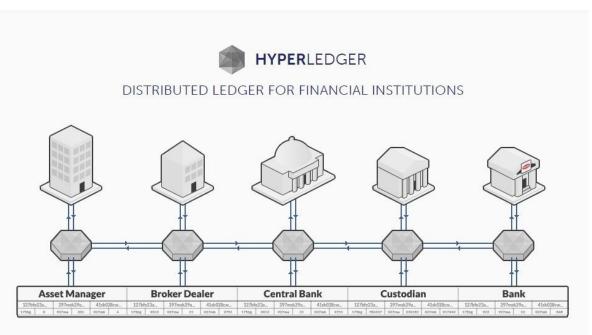
EY's focus on blockchain

We are currently identifying use cases and opportunities for EY to become a leader in the development and deployment of blockchain solutions...



Bitcoin

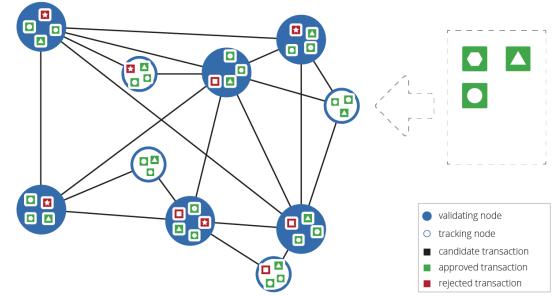
- Bitcoin is a cryptocurrency and a payment system
- ► First introduced in 2008 by an unknown source
 - Regarded as the first cryptocurrency
- ► First use or application of a public blockchain
 - Bitcoins are the currency used to reward for processing work


Ethereum

- A decentralized blockchain platform that runs smart contracts: applications that run exactly as programmed that can facilitate, verify, or enforce the negotiation or performance of a contract
- ► Founded in 2013 by programmer Vitalik Buterin
 - Live blockchain launched in 2015
 - Created on similar concepts of Bitcoin blockchain

Hyperledger

- The Hyperledger Project started in 2015 as a collaborative effort created to advance blockchain technology
- The project's goal is to identify and address important features for a cross-industry open standard for distributed ledgers that can transform the way business transactions are conducted globally.


Other protocols

- ► Everledger
 - Permanent blockchain ledger for diamond asset registry
- ► Factom
 - Data storage through a decentralized system
- Ascribe
 - Public ownership rights assigned via the blockchain
- Blockstack
 - Decentralized internet

Consensus

- The key part of a blockchain agreement that transactions and blocks are valid requires consensus from multiple parties
- In a private blockchain this is relatively easy, as access is restricted and all parties have a vested interest in maintaining the integrity of the chain.
- In a public blockchain this is much more complex, and must be engineered into the solution
- Many consensus mechanisms exist, e.g. Proof of Work, Proof of Stake.
- The aim is to ensure that agreement exists on the validity of all transactions and blocks in the chain

Ripple consensus protocol

Consensus Mechanisms

- Proof of Work Is a mathematical calculation that completes a block. Transactions are blocked, and a solution is difficult to find (but easy to verify) by utilizing a target state hashing model. The winner earns the block reward.
- Proof of Stake Transactions are blocked periodically, and miners are given a chance to win the block (and validate transactions) based on the amount of asset they hold. They are incentivized to be trustworthy as it dictates the value of their holdings.
- There are other types (federated, trusted) and some distributed ledgers don't use any.

Winter Committee Meetings

Staff Subcommittee on Rate Design

멸

-

÷

-

12

LOJENERGY

Distributed grid solutions that bring people, utilities and technology together

CONFIDENTIAL DO NOT DISTRIBUTE

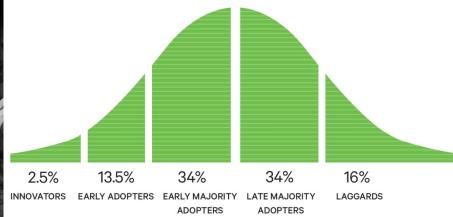
125

LO3 Energy Background

An energy company applying well-developed strategies for market transformation and adoption of new tech

Founded in 2012

Company background in: – Energy Program Design – Community Engagement


- EM&V

LOJENERGY


- Codes and Standards
- **REC** and Green Power Markets
- Blockchain
- Advanced Meters
- System Architecture
- Computation

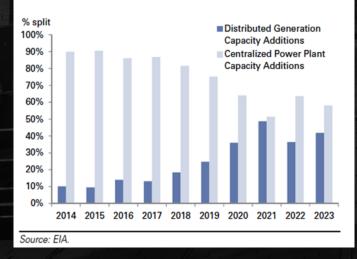
Technology Adoption Curve

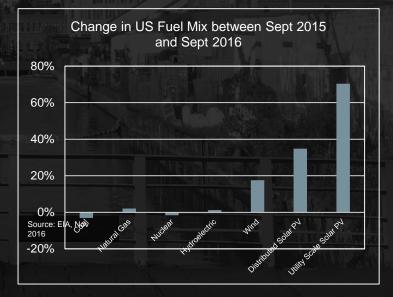
EVERETT ROGERS - DIFFUSION OF INNOVATIONS 1962

Measure energy flows and hash information to blockchain

- Patented, proprietary and UL-listed
- Next generation AMI
- Network through a variety of communication protocols and write smart contracts within the network

LO3 Energy Tech





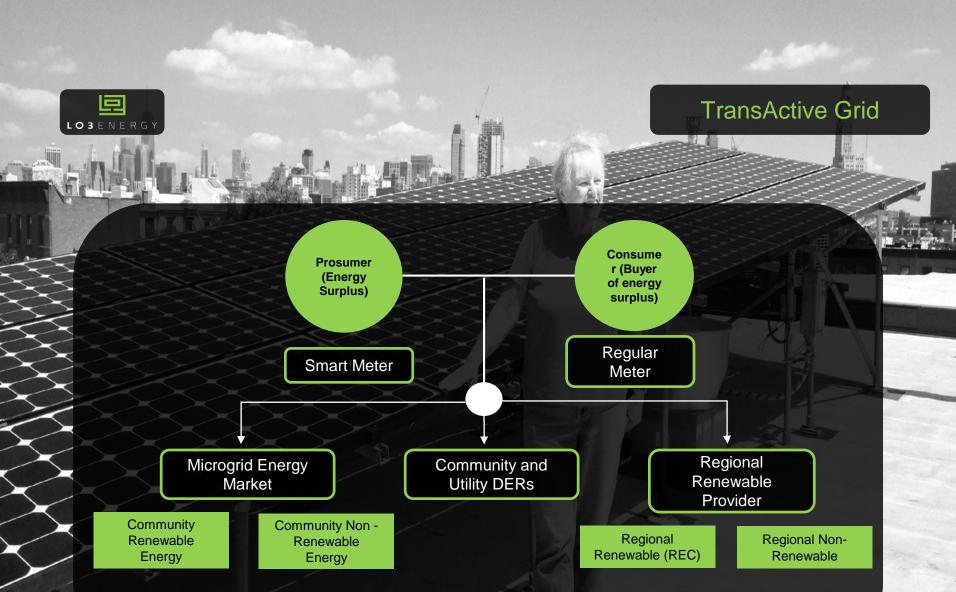
The second state of the se

% of centralized generation capacity adds vs. distributed, 2014-2023E

O 3 E N E R G

1200

Background


More than half of the estimated additional solar generation will be distributed, not utility scale

Problem

Utility Grid Faces Structural Issues

- Utility Grid is unidirectional and brittle while future calls for fast-acting platform that can enable 2 way flow and is resilient and adaptive
- Current utility operating models do not encourage Distributed Energy Resources (DERs)
- Major market changes underway, unprecedented shifts by utilities and market actors
- "Prosumer" movement creating pressure on existing business models
- Broad, coordinated control of small scale DERs is uneconomic
- Consumer participation in energy markets limited by regulatory barriers and solutions to facilitate secure, efficient transactions

Consumers have much more choice and can create personalized energy sourcing profiles

• Example: 80% from regional renewables and 20% from local microgrid

Milestones

LOJENERGY

Smart Meter Proliferation

11

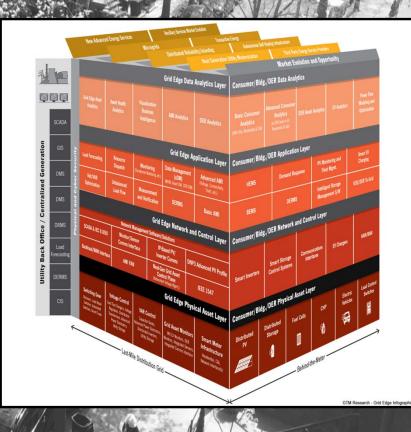
• Price discovery & Energy Transaction with microgrid members

Ŧ

TransActive Grid

Real-time, location based energy market

Transact on consumer values


- Price, green energy, clean signals, social good
- Multi-factor tokens to encourage what you want to see in the market

TransActive Grid

Blockchain-based Microgrid Intelligence System

LOJEN

- Transactive, distributed intelligence system to control microgrids
- Based on open-source, cryptographically-secure protocol layer delivering military-grade cybersecurity and real-time data
- Auditable, immutable, secure device control

Community Energy – Sharing Economy

Tokenization

回

LOJENERGY

P2P Markets

Prosumers

F)

Community Microgrids

Tokenization of energy production, storage and consumption creates efficient **local** markets Efficient Local Markets attract investment, increase impacts and create local value for energy, environment and community Rise of the **Prosumers** neighbor-to-neighbor, neighbor-to-business community transactions reward **local markets and return community value** Reward efficiency and resiliency allowing participants to optimize **existing energy spend** according to individual **values, priorities and outcomes**

Drivers

Energy Consumers Demand New Choice and Services

MILLION.

69% of consumers are interested in having an energy trading marketplace

47% of consumers plan to sign up for a community solar program managed by a 3rd party and one that allows them to benefit from solar even if they do not have solar panels on their property within the next 5 years

Source: Accenture multi-year New Energy Consumer Research program: surveyed over 13,000 consumers from 26 countries from 2010 - 2016

We Choose Local Green Energy

Community Energy

locally generated with community assets

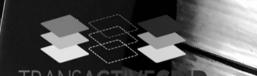
Microgrid Markets

local energy market, revenues and increased system resilience

TransActive Grid

1

secure platform for peer-2-peer transactive energy and markets


Current Status & Next Steps

- First peer-to-peer energy transactions executed
- Pilot and use case discussions underway
- Testing new business models
- Brooklyn Microgrid pilot in development
 - Over 130 sites registered
- Partners

LOJENERGY

- Production partners lined up
- Controls software development underway

New Technology – New Choices – New Deal

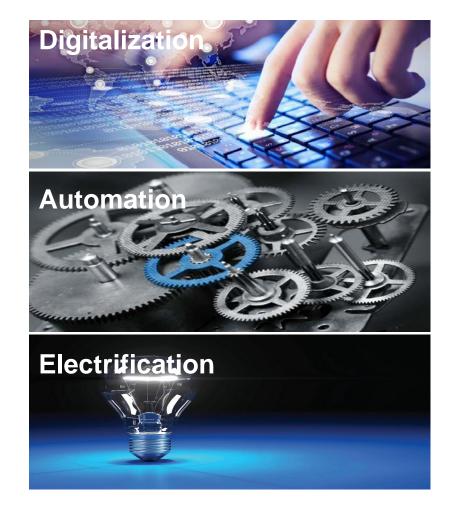
LOJENERGY

They are your electrons, right? Don't forget that.

Winter Committee Meetings

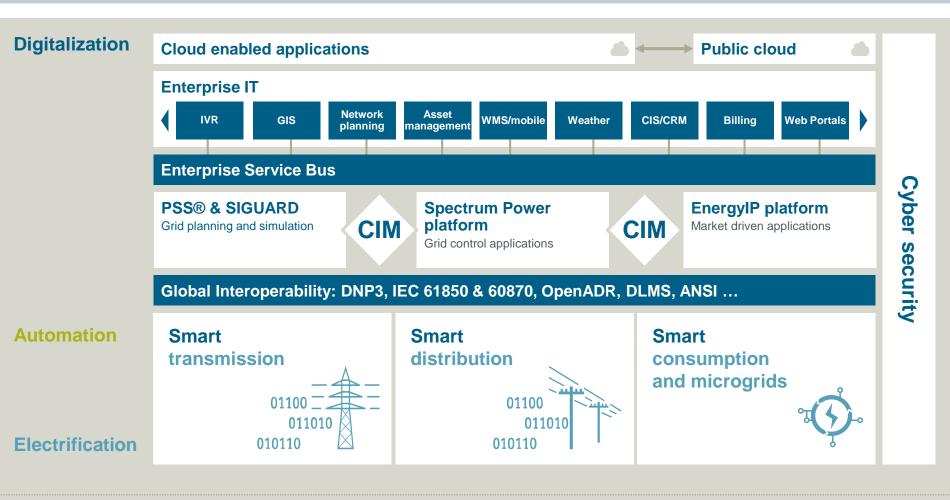
Staff Subcommittee on Rate Design

Hierarchical Energy Markets Enabled by Blockchain


Uneestricted © Siemens AG 2017

siemens.com

Siemens Vision 2020: Energy Management is a Siemens focus area

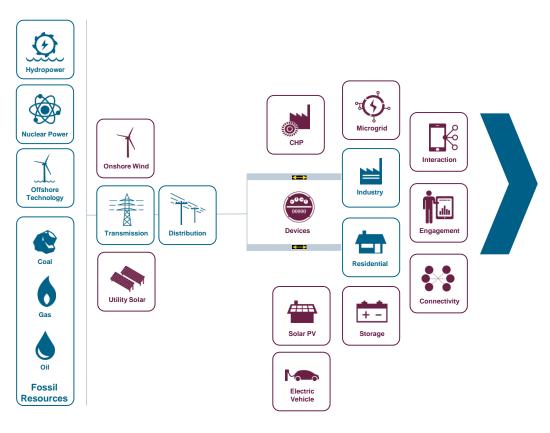


Unrestricted © Siemens AG 2017

Page 46 12.02.2017

Siemens Digital Grid

CIM – Common Information Model (IEC 61970)


Unrestricted © Siemens AG 2017

Page 47 12.02.2017

The Evolving Digital Footprint Imposes New Requirements

SIEMENS

The New 21st Century Customer-Centric Distributed Energy Experience

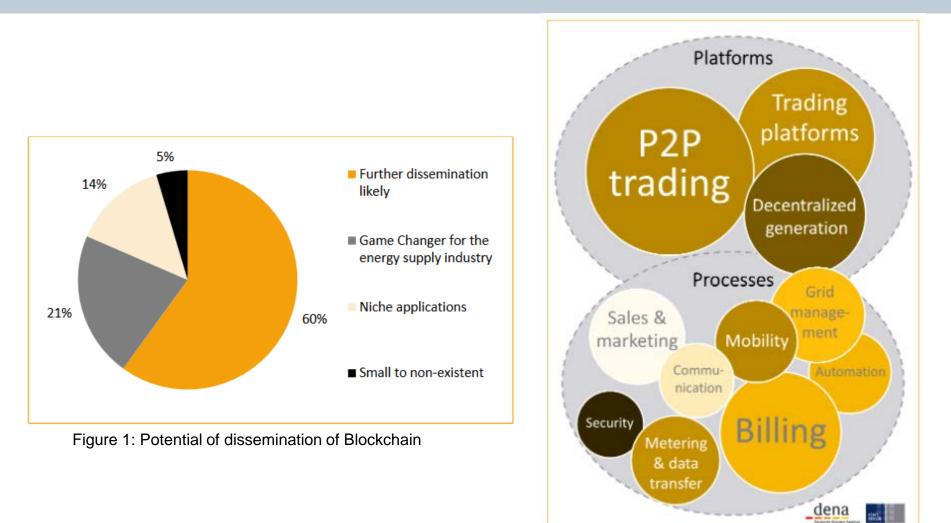
Energy Supplier

The energy suppliers ensure safe, reliable, and affordable energy to their customers based on a deterministic rate base mechanism.

Energy Integrator

Driven by customer demand, energy suppliers evolve to manage intermittent energy generation from thirdparty suppliers and consumers.

Energy Service Provider

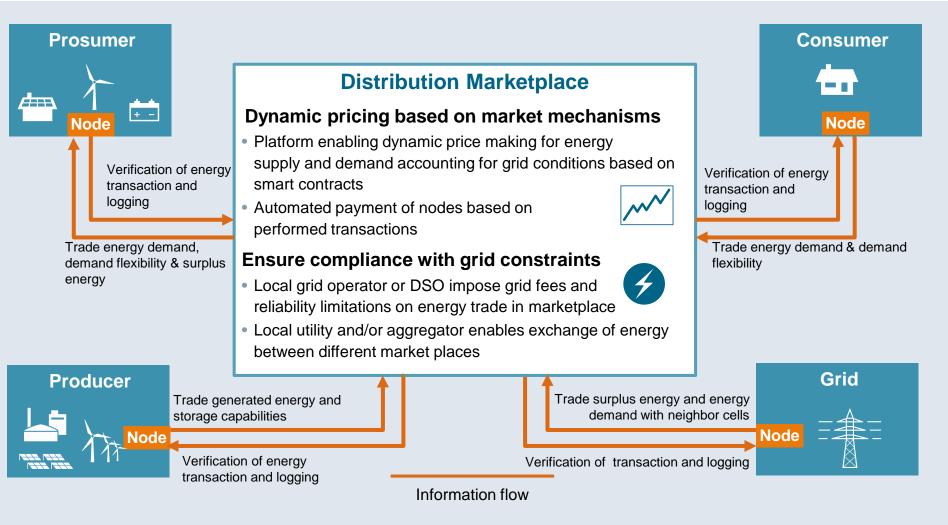

Rise of the Prosumer, combined with many 3rd energy choices, leads energy suppliers and integrators to become distribution network providers.

Unrestricted © Siemens AG 2017

Page 48 12.02.2017

How managers in the energy sector see the future of Blockchain

SIEMENS

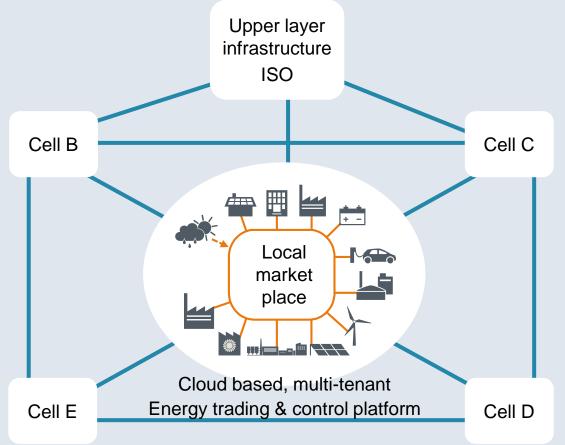

Source: dena ESMT Studie Blockchain, 2016

Unrestricted © Siemens AG 2017

Figure 2: potential use cases of Blockchain in the energy sector.

Page 49 12.02.2017

Distribution market for P2P energy trading based on Blockchain


Unrestricted © Siemens AG 2017

Page 50 12.02.2017

SIEMENS

P2P energy trading in and between distribution grids using blockchain technology enabling robust hierarchical cell-based energy system

SIEMENS

Local market place can be based on:

Grid infrastructure of one ore more DSOs

Local market place can contain...

- All types of consumer, prosumer s& producers
 - Individual Households
 - Commercial & Industrial Facilities
 - (local) Power plant operators
- With all types of loads, generation & storage assets
 - Photovoltaics
 - Wind
 - Storage
 - CHP
 - Biogas-PP, Gas Peaker-PP
 - Heat Pumps
 - Electric Vehicles
 - Flexible Loads

Unrestricted © Siemens AG 2017

Page 51 12.02.2017

Contact page

Ravi D Pradhan Vice President Siemens Energy Management Digital Grid

E-mail: ravi.pradhan@siemens.com

siemens.com

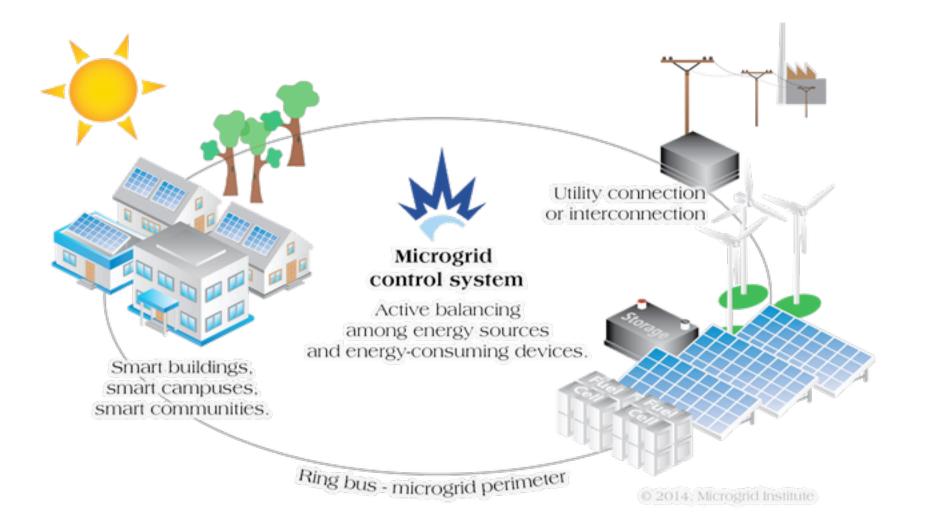
Unrestricted © Siemens AG 2017

Page 52 12.02.2017

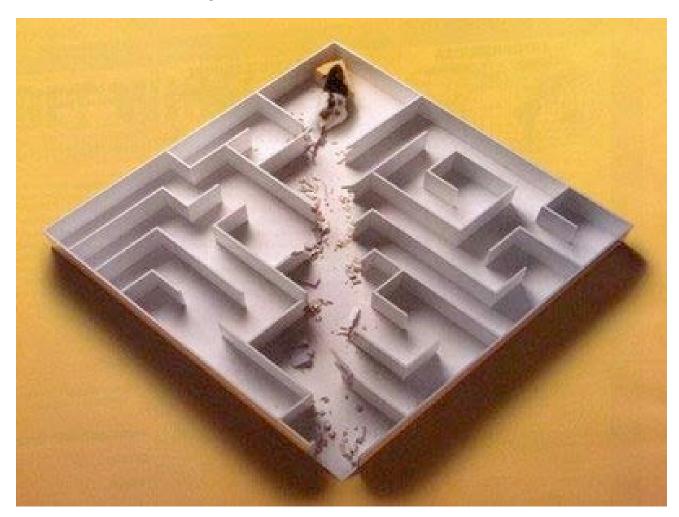
Winter Committee Meetings

Staff Subcommittee on Rate Design

Economic Implications of Blockchain for Electricity Distribution and Markets

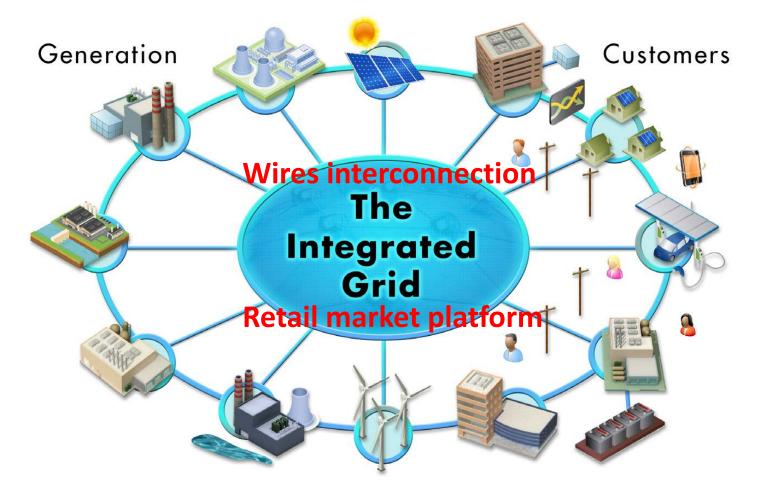

Lynne Kiesling Department of Economics, Northwestern University <u>Ikiesling@northwestern.edu</u>

February 2017


Transactive microgrids

Economics of blockchain for transactive energy

- Blockchain as transaction cost-reducing market platform
- Blockchain market platform + digital tech for sensing and automation + DERs + governance framework => decentralized autonomous retail market
- Buildings as microgrids
- Retail markets for energy, ancillary services


There is no innovation without experimentation

Decentralized market processes are innovation platforms

A techno-economic electricity distribution platform

Top takeaways

- Digital technologies are massive transaction cost reducers, and a transactive energy approach can direct those cost reductions to consumers. Blockchain platforms enable welfare-enhancing transactive energy systems.
- Blockchain-based platforms around the distribution edge can engage in the experimentation that leads to innovation. Don't perpetuate costs and entry barriers that stifle them.
- A distribution platform business model enables the wires utility to evolve into providing grid services to decentralized parties around the distribution edge.

Winter Committee Meetings

Staff Subcommittee on Rate Design