Resilience for Regulators

Future Climate Modeling for Utility System Planning: Key Lessons for State Utility Regulators

December 19, 2022 NARUC Center for Partnerships & Innovation

NARUC National Association of Regulatory Utility Commissioners

Opening Remarks & Introductions

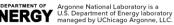
Moderator: Hon. Tremaine Phillips

Commissioner, Michigan Public Service Commission

Panelists:

Tom Wall PhD, Program Lead, Engineering & Applied Resilience, Argonne National Laboratory

Ryan Burg PhD, Principal Business Analyst, ComEd

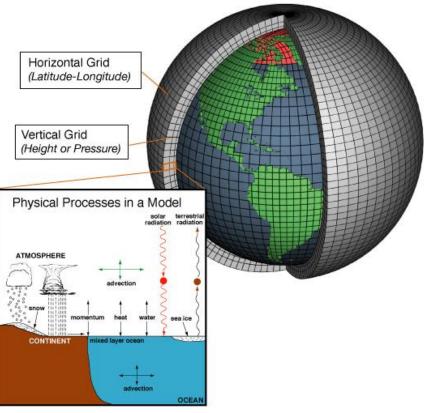

BUILDING A CLIMATE RESILIENT FUTURE FOR NORTHERN ILLINOIS

TOM WALL, PH.D.

Program Lead, Engineering & Applied Resilience Center for Climate Resilience and Decision Science

ARGONNE'S ROLE IN CLIMATE RESILIENCE Center for Climate Resilience and Decision Science

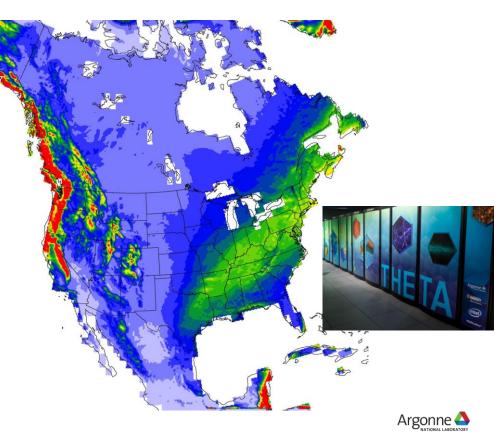
- The Center for Climate Resilience and Decision Science (CCRDS) conducts research and analysis to enable unmatched climate-risk informed decision-making and adaptation planning for public and private stakeholders facing a variety of climate-related challenges around the world.
- The CCRDS is comprised of a multidisciplinary scientific team that collaborates with research partners to ensure that climate risk-informed decision-making is contextualized in socio-economic, infrastructure, environmental, and fiscal realities so that mitigation actions are grounded in science and practicable for immediate implementation.



Argonne National Laboratory

GLOBAL CLIMATE SYSTEM MODELS

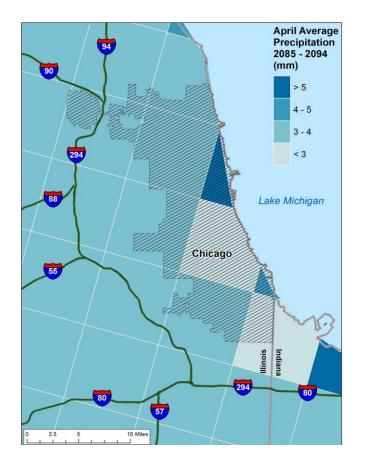
Mathematical representations of the climate system based on physical laws and understanding of processes



DYNAMICAL DOWNSCALING

ARGONNE'S DYNAMICALLY DOWNSCALED, REGIONAL CLIMATE MODELING IS A UNIQUE CLIMATE RESOURCE

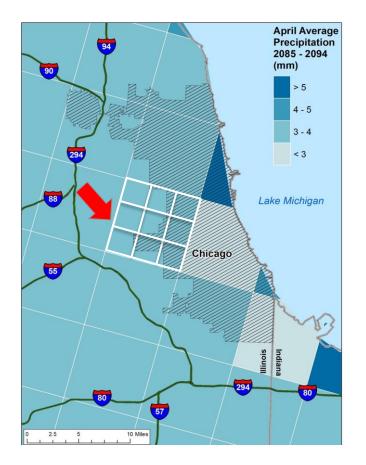
- High resolution, neighborhood level (12km)
- Scientific transparency: widely published and scientifically peer reviewed modeling and outcomes
- Dynamical downscaling offers improvements over statistical downscaling
 - Physics-based, addresses non-stationarity
 - Produces 60+ unique climate variables
- RCP8.5 (upper limit) + RCP4.5 (mid-century peak)
 - Useful for infrastructure protection and disaster planning



DYNAMICAL DOWNSCALING

ARGONNE'S DYNAMICALLY DOWNSCALED, REGIONAL CLIMATE MODELING IS A UNIQUE CLIMATE RESOURCE

- High resolution, neighborhood level (12km)
- Scientific transparency: widely published and scientifically peer reviewed modeling and outcomes
- Dynamical downscaling offers improvements over statistical downscaling
 - Physics-based, addresses non-stationarity
 - Produces 60+ unique climate variables
- RCP8.5 (upper limit) + RCP4.5 (mid-century peak)
 - Useful for infrastructure protection and disaster planning



DYNAMICAL DOWNSCALING

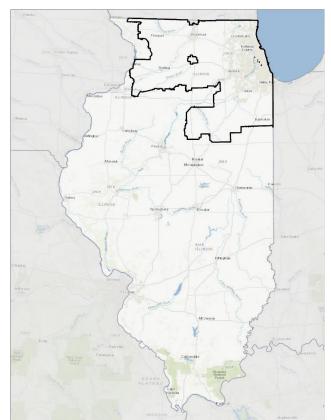
ARGONNE'S DYNAMICALLY DOWNSCALED, REGIONAL CLIMATE MODELING IS A UNIQUE CLIMATE RESOURCE

- High resolution, neighborhood level (12km)
- Scientific transparency: widely published and scientifically peer reviewed modeling and outcomes
- Dynamical downscaling offers improvements over statistical downscaling
 - Physics-based, addresses non-stationarity
 - Produces 60+ unique climate variables
- RCP8.5 (upper limit) + RCP4.5 (mid-century peak)
 - Useful for infrastructure protection and disaster planning



INFORMING DECISIONS

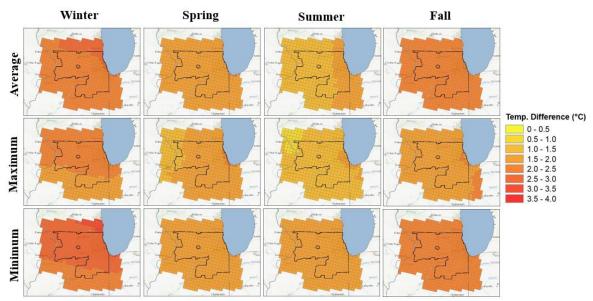
Climate Risk and Resilience Portal (ClimRR)


SUMMARY OF NORTHERN ILLINOIS CLIMATE

Climate Change in Northern Illinois

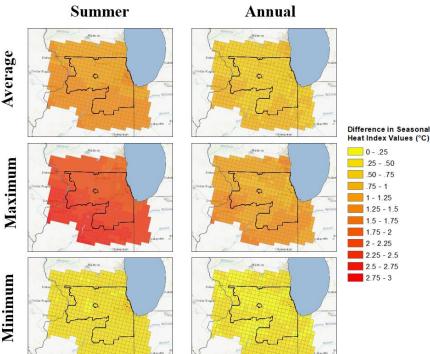
- Focus on mid-century climate impacts (2045-2054)
- Emphasis on high-emission, RCP8.5 scenario
- Comparison with historical baseline (1995-2004)
- Northern Illinois mid-century climate:
 - Substantially warmer
 - More humid

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC


 Wind generally the same, some seasonal differences

MID-CENTURY TEMPERATURES Climate Change in Northern Illinois

- Greater variability in seasonal temperatures, but all increase
 - Greater increases in Winter and Fall
 - Lesser increases in Spring and Summer
- Seasonal temperature increases generally range between 0.5°C and 3.5°C (~0.9°F to 6.3°F)

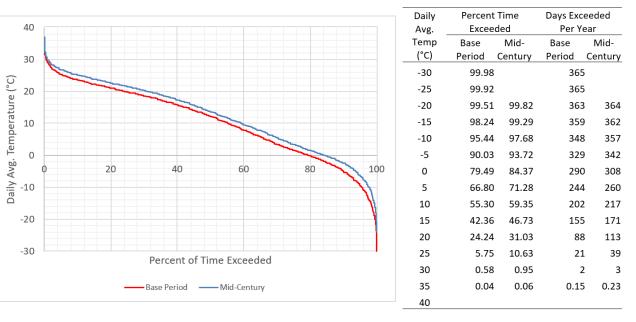


Change in seasonal average, minimum, and maximum temperatures from baseline period to mid-century.

MID-CENTURY HUMIDITY / HEAT INDEX Climate Change in Northern Illinois

- Consistent increases in humidity (i.e., heat index) across entire service territory, slight trend of greater increases in southern region
- Average Heat Index
 - Annual increase of 0.25°C to 1°C
 - Summer increase of 0.5°C to 1.25°C
- Maximum Heat Index
 - Annual increase up to 1.25°C
 - Summer increase up to 1.25°C to 2.5°C
- Minimum Heat Index
 - Annual increase 0.25°C or stay same
 - Summer increase 0.25°C or stay same

Change in the summer and annual average, maximum, and minimum heat index from the baseline to mid-century periods.



TEMPERATURES ABOVE THRESHOLD

Modeling Utility-Relevant Climate Impacts

- Consistent increase in the frequency by which daily average temperature thresholds are exceeded
- Baseline:
 - 30°C (86°F) exceeded 2 days/year
 - 35°C (95°F) exceeded
 ~1 days/decade
- Mid-century:
 - 30°C (86°F) exceeded 3 days/year
 - 35°C (95°F) exceeded
 ~4 days/decade

Percentage of time (days/year) that daily average temperatures exceed a given threshold for the baseline and mid-century periods

HEATING DEGREE DAYS

Modeling Utility-Relevant Climate Impacts

- Heating Degree Days (HDD) calculated using 65°F base temperature
- Annual HDDs decrease between 761 to 1060 across service territory
- Greatest decreases in Fall and Winter
 - Winter: Decrease 341 to 476
 - Spring: Decrease 178 to 275
 - Summer: Decrease 3 to 49
 - Fall: Decrease 213 to 298 _

-7 - -3

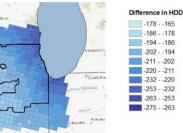
-13 - -7

-20 - -13

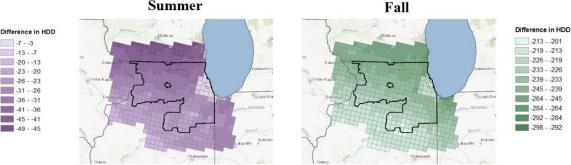
-23 - -20 -26 - -23

-31 - -26

-36 - -31


-41 - -36

-45 - -41


-49 - -45

Spring

Summer

Change in the seasonal count of HDDs between the baseline and mid-century periods

COOLING DEGREE DAYS

Modeling Utility-Relevant Climate Impacts

- Cooling Degree Days (CDD) calculated using 65°F base temperature
- Annual CDDs increase between 258 to 399 across service territory
- Greatest increase in Summer and also Fall (Winter not calculated)
 - Spring: Increase 16 to 110
 - Summer: Increase 173 to 287
 - Fall: Increase 0 to 120

Difference in CDD

16 - 24

25 - 34

35 - 52

53 - 60

68 - 76

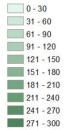
77 - 84

92 - 91

98 - 110

- 61

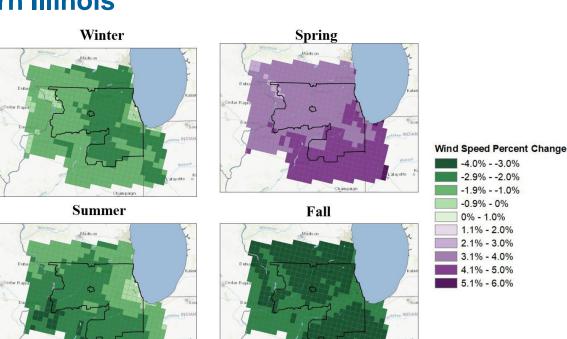
Summer

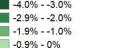


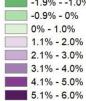
Difference in CDD 173 - 186 187 - 195 196 - 203 204 - 211 212 - 218 219 - 226 227 - 241 242 - 260 261 - 274 275 - 287

Fall

Difference	in CDD
------------	--------


Change in the seasonal count of CDDs between the baseline and mid-century periods



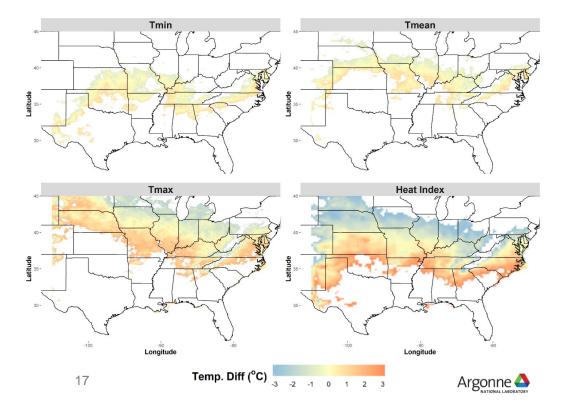


MID-CENTURY WIND SPEEDS Climate Change in Northern Illinois

- Change in annual average wind speed is negligible across service territory (-0.52%)
- Seasonal variation in maximum daily wind speed: decreases in Summer, Fall and Winter; increases in Spring.
- Across entire service territory, average wind speed changes
 - Winter: -1.51%
 - Summer: -1.90%
 - Fall: -2.96%
 - Spring: +3.95%

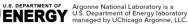
mette

Percentage change in the seasonal averages of daily maximum wind speeds from baseline to mid-century.


atavette

REGIONAL ANALOG COMPARISON Modeling Utility-Relevant Climate Impacts

- Climate analogs compare ComEd's future climate at mid-century with other regions that are currently experiencing similar climate today
- ComEd's future annual temperatures may feel like today's temperatures in...
 - Min Temps: Southern Illinois
 - Avg Temps: Springfield, IL
 - Max Temps: Champaign, IL
 - Heat Index: Central Missouri



QUESTIONS?

CCRDS@ANL.GOV

CENTER FOR CLIMATE RESILIENCE AND DECISION SCIENCE **Argonne National Laboratory**

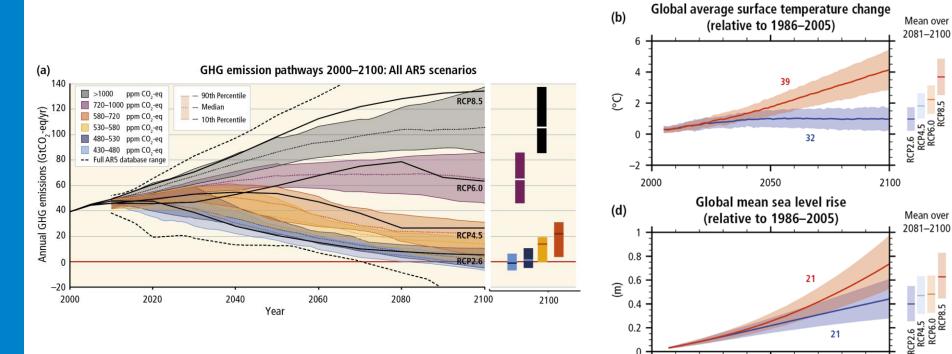
"RECENT" TRENDS IN GLOBAL TEMPERATURE

Human influence has warmed the climate at a rate that is unprecedented in at least the last 2000 years

Changes in global surface temperature relative to 1850-1900

(a) Change in global surface temperature (decadal average) as reconstructed (1–2000) and observed (1850–2020)

°C °C 2.0 2.0 Warming is unprecedented in more than 2000 years 1.5 1.5 Warmest multi-century observed period in more than simulated 100.000 years 1.0 1.0 human & natural observed 0. 0.5 0.2 simulated natural only 0.0 (solar & volcanic) -0.5-0.5 -1 500 1000 1850 2020 1850 1900 1950 2000 2020 1 1500


(b) Change in global surface temperature (annual average) as **observed** and simulated using human & natural and only natural factors (both 1850–2020)

IPCC AR-6

FUTURE CLIMATE IS DRIVEN BY GHG EMISSIONS

2000

2050

Year

2100

Argonne 🦨

