

NATIONAL COUNCIL ON ELECTRICITY POLICY

Welcomes Argonne National Laboratory

Thursday, April 9, 2020 Virtual Meeting

NATIONAL COUNCIL ON ELECTRICITY POLICY

Argonne National Laboratory

<u>Agenda</u>

- Overview of Argonne National Labs
- Overview of Energy Zones Mapping Tool (EZMT)
- Update on (forthcoming) Valuation
 Guidance and Techno-Economic Studies
 for Pumped Storage Hydropower
- Other projects
- Q&A

Kerry Worthington

kworthington@naruc.org

Welcome

During the webinar:

- This webinar is being recorded.
- Ask questions through the chat function in the GoToWebinar application.
 - Relevant clarifying questions will be asked immediately.
 - Other questions will wait for the discussion at the end.
 - Type in your questions anytime.

After the webinar:

- Presentation and recording posted on <u>www.electricitypolicy.org</u>.
- Unanswered questions will be sent to panelists with contact information (unless you prefer to remain anonymous and staff will liaison).
- Join our listserv by checking off NCEP as an interest area in your MYNARUC account at <u>www.naruc.org/mynaruc/</u> or e-mail Kerry Worthington at <u>Kworthington@naruc.org</u> after your profile has been created.

The National Council on Electricity Policy (NCEP)

- NCEP is a peer-learning platform to examine the ways new technologies, policies, regulations, and markets impact state resources and the bulk power system.
- NCEP is currently exploring the evolving interface between the transmission and distribution systems as the resource mix on the grid changes (planning, operations, and markets).
- NCEP thanks the U.S. Department of Energy for its ongoing support. NCEP is administered by NARUC. All NCEP resources are available at www.electricitypolicy.org.


The Honorable Ted Thomas

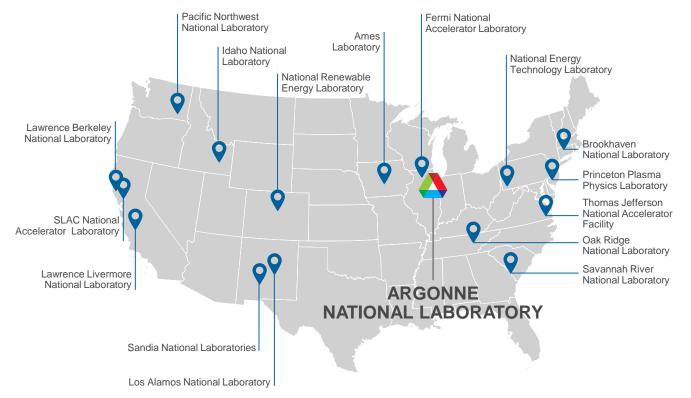
Arkansas Public Service Commission Webinar Moderator

Argonne National Laboratory Panelists

Vladimir Koritarov

Jim Kuiper

OVERVIEW OF ARGONNE


VLADIMIR KORITAROV

Program Manager and Group Leader Energy Systems Division 630-252-6711 koritarov@anl.gov

NCEP Webinar April 9, 2020

JIM KUIPER Principal Geospatial Engineer Environmental Systems Division 630-252-6206 kuiper@anl.gov

A VITAL PART OF THE DEPARTMENT OF ENERGY NATIONAL LABORATORY SYSTEM

DIVERSIFIED RESEARCH PORTFOLIO \$1.02 Billion in FY2020

End-to-end, from discovery to application

User facilities integrated with our research

Collaborations within and outside Argonne

ARGONNE IS FOCUSED ON SOLVING BIG PROBLEMS IN SCIENCE AND ENGINEERING

EMERGING INITIATIVES

MAJOR INITIATIVES

ARGONNE'S RESEARCHERS AND DISCOVERIES ARE WIDELY RECOGNIZED

~120 R&D 100 Awards

Thousands of inventions recorded and patents issued

THREE NOBEL PRIZES

Enrico FERMI

700+ national and international awards and honors Numerous DOE commendations, including Secretary's Awards 4 in 2018

Maria GOEPPERT MAYER

Alexei ABRIKOSOV

ARGONNE FOSTERS A DIVERSE, WORLD-CLASS COMMUNITY OF TALENT

1,330+ S&T Staff

7,900+ Facility Users

790+ Visiting Researchers

3,200+ Employees

340+ Joint Faculty

590+ Students

ARGONNE'S PARTNERSHIPS SPAN SECTORS FROM START-UPS TO FORTUNE 500'S

MANUFACTURING	ENERGY	INFORMATION TECHNOLOGY	PHARMACEUTICALS
P&G Ford Conta	Exelon.		Abbott Lilly Pfizer
GENERAL MOTORS	Schneider	EY S A X S U N	AMGEN MedImmune
	G Electric	IBM Honeywell	AstraZeneca
	Black Pak inc. NUSCALE	SAMSUNG /	⊘CALITHERA U NOVARTIS
PG 3M MDG	SUNPOWER® S AMBRI	Connectivity Panoramic Technology HITACHI	
	Baldor 💥 AutoGríd		CrownBio élan Cedgene
SEMATECH DOW SCHOTT glass made of ideas	EaglePicher Technologies, LC		
CYMER. TOYOTA CENTRAL R&D LABS., INC.	NUSCALE INTERNATIONAL		ARRAY Plexxikon 😜

THANK YOU!

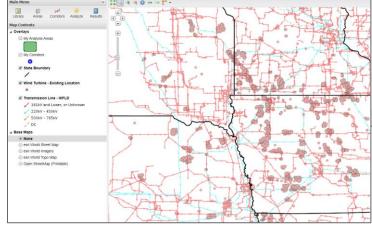
www.anl.gov

Energy Zones Mapping Tool (EZMT)

National Council on Electricity Policy Meeting April 9, 2020

Jim Kuiper Principal Geospatial Engineer Argonne National Laboratory

EZMT Energy Zones Mapping Tool

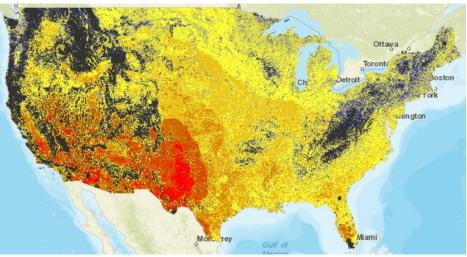

A map-based tool for identifying areas within the United States that may be suitable for clean power generation.

- Initiated by EISPC request as part of the technical support from Argonne, NREL, and Oak Ridge
- Funded by DOE Office of Electricity
- Launched in 2013
- Publicly available web-based mapping tool for energy analysis
 - -Large geospatial data library (over 320 mapping layers)
 - -Suitability modeling and analysis to map
 - Areas highly suitable for energy development
 - Potential energy corridor paths
 - -Location-specific reports dynamically generated from database

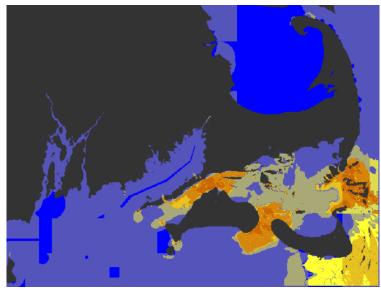
The EZMT Has an Extensive GIS Data Library

- Over 320 GIS mapping layers:
 - Energy resources (wind, solar, biomass, etc.)
 - -Energy infrastructure
 - -Siting factors
 - -Reference layers
 - -Environmental
- Detailed metadata for all layers
- Downloadable GIS data for most layers
- Actively maintained and updated

Μ	lap Layer Cat	alog	Model Layer Catalog					
	Actions	Title	*		Ŧ	Category	Source	Resource
ŧ	🔀 🔎 🔍	1-Ax	is Tracking Flat-Plate Co	llector		Climate	National Renewable Energy Laborat	Solar
ŧ	🔀 🔎	100	Year Flood Zone			Hydrography	Federal Emergency Management A	
ŧ	🔀 🔎 🔍	Air F	Route Surveillance Radar	(ARSR)		Communications	MIT's Lincoln Laboratories; et al	
ŧ	🔀 🔎 🔍	Airpo	ort			Transportation	Federal Aviation Administration	
ŧ	🔀 🔎 🔍	Airpo	ort Runway			Transportation	Federal Aviation Administration	
ŧ	🔀 🔎 🔍	Airpo	ort Surveillance Radar (A	SR)		Communications	Compiled from Multiple Sources	
ŧ	🔀 🔎 🔍	Alter	mative Fuel Station			Transportation	National Renewable Energy Laborat	
ŧ	🔀 🔑 💷	Anch	horage Area			Transportation	National Oceanic and Atmospheric	
ŧ	🔀 🔎 🔍	Appa	alachian Foothills Focus	Area (OH)		Ecology	OH Department of Natural Resource	
ŧ	🔀 🔎 🔍	Aqua	atic Conservation Focus	Area (MT)		Ecology	MT Department of Fish, Wildlife, and	
ŧ	🔀 🔑 💷	Aqua	atic Priority Area (TN)			Ecology	TN Wildlife Resources Agency	
ŧ	🔀 🔎 💷	Aqua	atic Priority Conservation	Area (AL)		Ecology	AL Department of Conservation and	
ŧ	🔀 🔎 🔍	Aque	educt Water Risk			Hydrography	World Resources Institute	
ŧ	🐹 🔎 🔍	Aque	educt Water Stress Proje	ctions		Climate	World Resources Institute	
ŧ	🔀 🔑 🔍	Aqui	ifer Area			Hydrography	U.S. Geological Survey	
ŧ	🔀 🔎 🔍	Artifi	cial Reef			Ecology	National Oceanic and Atmospheric	
ŧ	🔀 🔎 🔍	Atlar	ntic OCS Wind Energy A	rea		Climate	Bureau of Ocean Energy Management	
_	es Mappino	-			_	Help Logout	Bureau of Land Management	


National Oceanic and Atmospheric... Bureau of Ocean Energy Management Bureau of Land Management National Oceanic and Atmospheric... Oak Ridge National Laboratory Storage U.S. Energy Information Administrati... IN Department of Natural Resources NC Office of Conservation, Planning... University of VT - Spatial Analysis Lab NE Game and Parks Commission PA Natural Heritage Program - West...

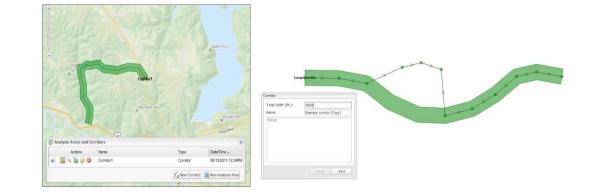
Wind turbines and electrical transmission in the plains states


10

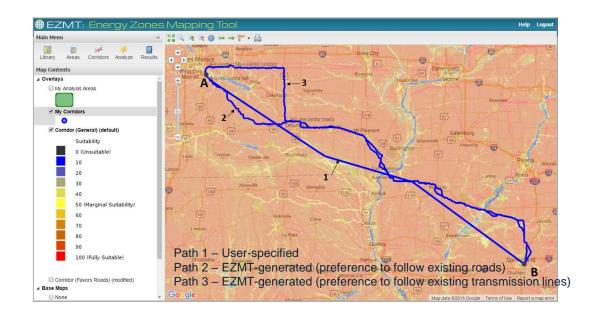
EZMT Modeling – Unique and Powerful

- Nine energy resources
 - Natural gas, solar, wind, corridor, ...
- Forty preconfigured models
 - Wind (land-based and offshore),100m height
 - PV solar
 - Combined-Cycle Gas Turbine
 - -...
- Over ninety modeling layers
 - PV solar resource
 - Distance to >=220 kV substation
 - Habitat
 - -...
- Intuitive and flexible model interface
- Can use default models, revise them for user preferences, or design new models

Utility scale photovoltaic solar



Marine tidal hydrokinetic around Cape Cod


EZMT Modeling – Potential Corridor Paths

Two analytical options are available:

 a) User can draw a corridor path on the map, specify a width, and run a corridor analysis report

 b) EZMT can model the most suitable path between points A and B, based on user-specified constraints and siting preferences

EZMT Reports – Rapid and Specific

- Sixteen report topics: Power plant, corridor, protected land, ...
- Generated from current database content
- Run for user-specified map areas

EISPC EZ N	1apping Too	I	Generate	d by the EISPC Energy Zone Mapping Tool <u>https://eispctools.anl.gov</u> 08-21-2013		Estimated Peak Horizontal with 10% Probability of Ex
Corridor F	-					From Milepost (mi) 0.00 154.: Source: <u>U.S. Geological Survey (Seismic Haza</u>
Corridor Analyzed: The corridor starts at 41° 3' 40.4 The centerline length is 154.12 mi The 550 foot (0.104 mile) width re States and Counties	48" N, 90° 27' 5.565" W, and les long. sults in a total area of 16.05 squa	ire miles.	21" N, 87° 30′ 25.956" N	L		Mapping Color Recommendation Red Exclude from development Orange Develop with extreme cau Yellow Develop with caution
From Milepost (mi)	To Milepost (mi)	State Name	County Name	Area Within Corridor (sq mi)		Protected Lands
0.		Illinois Illinois	Warren Knox		0.00	From Milepost (mi)
24.	28 34.6	Illinois	Stark		0.07	0.0
34.		Illinois	Peoria		0.12	10.0
51.		Illinois	Marshall		0.03	20.0
57.		Illinois	Woodford		0.16	20.0
79.		Illinois Illinois	Livingston Ford		0.26	30.0
121.		Illinois	Iroquois		0.23	40.0
152.		Indiana	Newton		0.01	50.0
TOTAL					1.07	
Source: U.S. Census Bureau; et a	l (County Boundary (Generalized	l)) not available.				60.0
Γ	Elevation Profiles					70.0
Populated Places	Min Elevation : 135.0 - Max ele	vation: 254.0				
From Milepost (mi)				st 0.0 to Milepost 10.0 raphic Slope (percent): Min = 1.0 , Mean = 3	3.10. Max = 9.0	
	255					Habitat
	235 -	\sim	~			From Milepost (mi)
	215 - 195 -					0.0
	175 - 155 -					10.0
	135	2	4	6	8 10	20.0
		-				30.0
			From Milepos	t 10.0 to Milepost 20.0		40.0
		on (ft): Min = 234.0	D, Max = 254.0 Topogra	aphic Slope (percent): Min = 1.0 , Mean = 2	.81, Max = 16.0	
	255 - 235 -					50.0
	215 - 195 -					Corridor re
L	175 -					

From Mil	lepost (mi)	To Mil	lepost (mi)		Minimum Peak Horizontal Acceleration	(%g)
0.00		154.12				
Source: U.S. Geolo	gical Survey (Seismic	Hazard).				
	-		1			
Mapping Color	Recommen					
Red	Exclude from develo					
Orange	Develop with extrem	e caution				
Yellow	Develop with caution	1				
Protected L From	.ands Milepost (mi)		To Milepost (n	ni)	Recommendation	Percent
From			To Milepost (n			
From		10.0	To Milepost (n		No issues identified in data	100
From		10.0	To Milepost (n		No issues identified in data No issues identified in data	100
From 0.0 10.0		20.0	To Milepost (n		No issues identified in data No issues identified in data Exclude from development	100 84 15
From			To Milepost (n		No issues identified in data No issues identified in data Exclude from development No issues identified in data	100 84 15 95
From 0.0 10.0 20.0		20.0	To Milepost (n		No issues identified in data No issues identified in data Exclude from development No issues identified in data Exclude from development	100 84 15 95
From 0.0 10.0 20.0 30.0		20.0 30.0 40.0	To Milepost (n		No issues identified in data No issues identified in data Exclude from development No issues identified in data Exclude from development No issues identified in data	100 84 95 4 100
From 0.0 10.0 20.0 30.0 40.0		20.0 30.0 40.0 50.0	To Milepost (n		No issues identified in data No issues identified in data Exclude from development No issues identified in data Exclude from development No issues identified in data	100 84 15 95 4 100 100
From 0.0 10.0 20.0 30.0		20.0 30.0 40.0	To Milepost (n		No issues identified in data No issues identified in data Exclude from development No issues identified in data No issues identified in data No issues identified in data	100 84 15 95 4 100 100 53
From 0.0 10.0 20.0 30.0 40.0		20.0 30.0 40.0 50.0	To Milepost (n		No issues identified in data No issues identified in data Exclude from development Exclude from development No issues identified in data No issues identified in data No issues identified in data	Percent 100 84 15 95 4 100 100 100 100 100 100 101 1 1 1 1 1
From 0.0 10.0 20.0 30.0 40.0		20.0 30.0 40.0 50.0	To Milepost (n		No issues identified in data No issues identified in data Exclude from development No issues identified in data No issues identified in data No issues identified in data	
From 0.0 10.0 20.0 30.0 40.0		20.0 30.0 40.0 50.0	To Milepost (n		No issues identified in data No issues identified in data Exclude from development No issues identified in data No issues identified in data No issues identified in data	

From Milepost (mi)	To Milepost (mi)	Recommendation	Percent
0.0	10.0	No issues identified in data	98.68
		Develop with extreme caution	1.32
10.0	20.0	No issues identified in data	99.35
		Develop with caution	0.65
20.0	30.0	No issues identified in data	87.25
		Develop with caution	12.75
30.0	40.0	No issues identified in data	100.00
40.0	50.0	No issues identified in data	57.82
		Develop with caution	38.78
		Develop with extreme caution	3.40
50.0	60.0	No issues identified in data	52.63

Corridor report excerpts

13

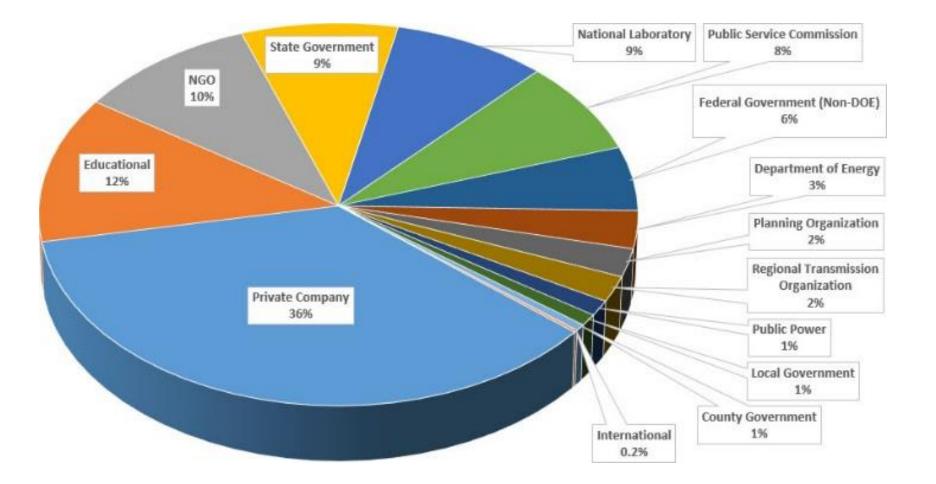
Example Use Cases

Mapping library

- -Discover new, vetted, geospatial data and download it for internal use
- Interactively study energy infrastructure and resources nationally or locally
- Models
 - -Visualize where power plants of different types are most viable, and why
 - -Examine where transmission capacity increases could be most effective
 - -Find a potential corridor route that avoids many constraints
- Reports
 - -Compare power generation portfolio for different regions (power plant)
 - Rapidly inventory characteristics and constraints along a potential corridor

Recent Activities

- Newsletters and webinars (announced to users and other stakeholders)
- Added corridor/analysis area import/export tools
- Extended solar, wind, corridor models to lower 48 states
- Increased data content, such as:
 - "Sight Wind Right" data from The Nature Conservancy
 - Natural Gas Compressor Stations
 - Petroleum Refineries
 - Petroleum Product Terminals


4

Recent Activities

- Transitioned from Platts to HIFLD transmission data
- Updated distance to transmission modeling layers
- Added distance to substation modeling layers
- Reviewed and updated all models
- Pilot study and discussions about EZMT's potential for electric vehicle charging station planning

EZMT User Community

Over 2,000 users have registered.

Energy Zones Mapping Tool

- Register for and access the tool here: <u>http://ezmt.anl.gov</u>
- Questions/comments at any time to: <u>ezmt@anl.gov</u>

e online mapping bot bi clearly many differences and several			clean power generation.	
E Dreeyy Zanes Mapping Tool is a earlier august dayse regring resources: <u>Biomass</u> . Chain <u>Cost</u> <u>Reservices areas</u> <u>and the Sources Water</u> and <u>Manuel Cast</u> . Chain <u>Cost</u> <u>Reservices areas</u> <u>Contract on the Earlier Cost Cost areas</u> <u>Sources and Cost areas</u> . Click the <u>Laurent Tool utions above to start the body on the image below to <u>Sources and Cost areas</u>. <u>Click the Laurent Tool utions above to</u> <u>start the body on the image below to</u> <u>Sources and Cost areas</u>. <u>Click the Laurent Tool utions above to</u> <u>start the body on the image below to the body on the body on the image below to <u>start the body on the body o</u></u></u>	About the Tool	Features	Getting Started	Nows
aeos. regulatoria Updatas S.Commercializ. Licenses Data	The Energy Zones Mapping Tool is a the online mapping tool to identify when the United States. This web tab provides information batch the provides information batch the provide selectronic of the temporary and details on the temporary and details on the temporary and the tool. There are temporary and the temporary and temporary and temporary and temporary and temporary and temporary and temporary and temporary and temporary and temporary and tempor	Clean Coal, Geothermal, Natural Clas, Nuclear, Solar, Storage, Water, and Wind Flexible modeling of power plant and corridor siting factors such as slope and land protections Tools to generate and analyze potential comdor routes	start the fool, on the image below to view an introductory video, or use the Heip menu, at the top of the page for more detailed directons. We are interested in your feedback. Please email your comments to	Underst Web Pages Content on the EAT home page, and other sub-pages was reviewed and updated March 16, 2016 New Energy Inhastructure and Realised Cate Realised Cate Realised Cate Realised Cate (Content) (Content) The Biotechic New Deen added to the March 15, 2016 Updates to Commercially

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Valuation of Pumped Storage Hydropower (PSH)

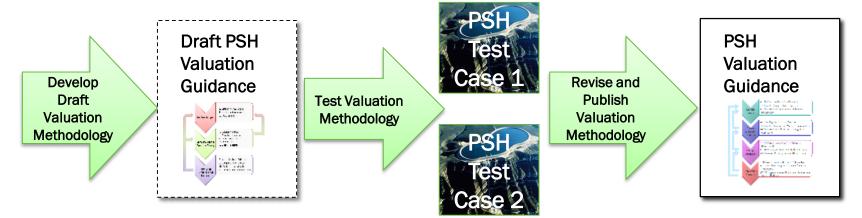
Presented by: Vladimir Koritarov, Pl Argonne National Laboratory

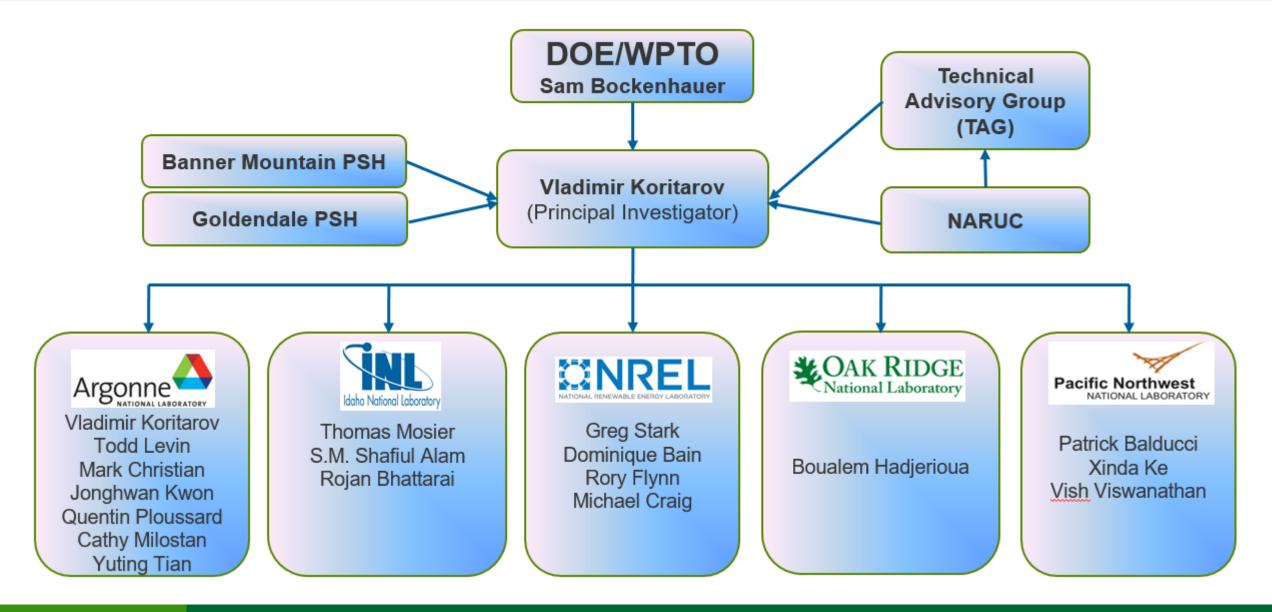
National Council on Electricity Policy (NCEP) Webinar April 9, 2020

Valuation Guidance and Techno-Economic Studies for PSH

Project Background and Overview:

- Study funded by Department of Energy's (DOE's) Water Power Technologies Office (WPTO)
- Carried out under the WPTO HydroWIRES initiative by a collaborative comprised of five DOE National Laboratories


Office of ENERGY EFFICIENCY & RENEWABLE ENERGY


Project Goals and Objectives

Objective: Advance the state of the art in the assessment of value of PSH plants and their role and contributions to the power system **Specific goals:**

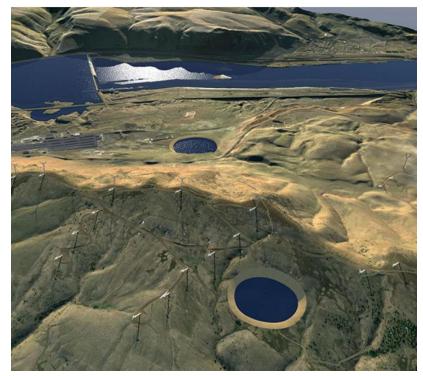
- **1**.Develop a comprehensive and transparent valuation guidance that will allow for consistent valuation assessments and comparisons of PSH projects
- 2.Test the PSH valuation methodology by applying it to two selected PSH projects
- 3.Transfer and disseminate the PSH valuation guidance to the hydropower industry, PSH developers, and other stakeholders

Project Team and Organization

The Project Team is Collaborating with Two Industry Partners

Absaroka Energy

Banner Mountain PSH


- 400 MW, quaternary technology
- Closed loop
- Site near Casper, WY

National Grid & Rye Development

Goldendale Energy Storage Project

- 1,200 MW, adjustable speed technology
- Closed loop
- Site just north of OR/WA border

Collaboration with Technical Advisory Group (TAG) and NARUC

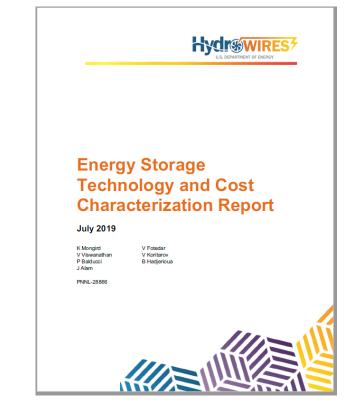
Technical Advisory Group:

Denis Bergeron	Maine PUC	Edward Hansen	PG&E – Pacific Gas & Electric
Norman Bishop	Knight Piesold	Elaine Hart	PGE – Portland General Electric
Brent Buffington	SCE – Southern California Edison	Udi Helman	Helman Analytics
Wei Dang	PSE – Puget Sound Energy	Michael Manwaring	, McMillen Jacobs Associates
Peter Donalek	Stantec	Jay Mearns	PG&E – Pacific Gas & Electric
Christine Ericson	Illinois Commerce Commission	•	
Don Erpenbeck	Stantec	Denis Obiang	LADWP
Robert Fick	LADWP	Aidan Tuohy	EPRI
Scott Flake	Scott Flake Consulting	Bruno Trouille	Mott McDonald
Levi Gilbert	PG&E – Pacific Gas & Electric	Robert Williams	PSE – Puget Sound Energy

NARUC (National Association of Regulatory Utility Commissioners) is assisting the Project Team in coordinating TAG activities and in industry outreach.

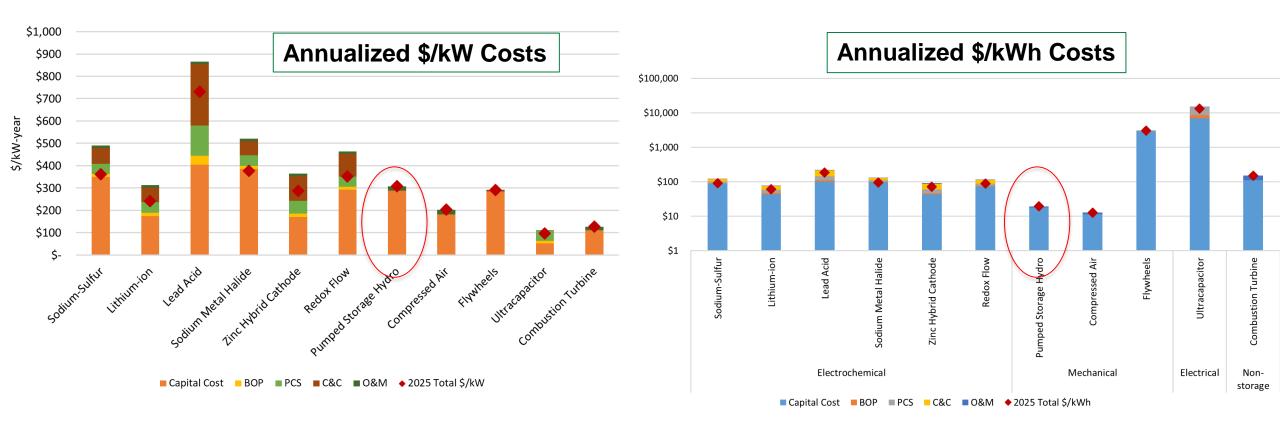
- Kerry Worthington
- Chris Villarreal (Plugged In Strategies) Consultant to NARUC

Key Project Tasks


- ✓ Conduct valuation literature review (Completed)
- Perform a cost and performance comparison of PSH and competing technologies (Completed)
- Develop draft PSH valuation guidance (Completed)
- Conduct techno-economic studies for two selected PSH projects (In progress)
- Analyze potential market revenues of two PSH projects (In progress)
- Conduct two valuation case studies to test the guidance and its underlying methodology
- Revise PSH valuation guidance and document study findings

Published Energy Storage Cost and Performance Study

- Objective was to define and compare energy storage technology costs and to evaluate these technologies across a variety of performance parameters
 - Lithium-ion
 batteries
 - Lead-acid batteries
 - Redox flow batteries
 - Sodium-sulfur batteries
 - Sodium metal halide batteries

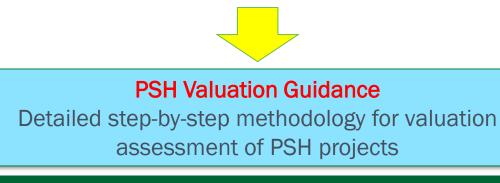

- Zinc-hybrid
 cathode
 batteries
- Pumped
 storage
 hydropower
- Flywheels
- Compressed air energy storage
- Ultracapacitors

https://www.energy.gov/eere/water/hydrowires-initiative (Under Updates/Publications)

https://www.energy.gov/sites/prod/files/2019/07/f65/Storage%20Cost%20and %20Performance%20Characterization%20Report_Final.pdf

Annualized Costs by Technology

- Cost information procured for most recent year for which data are available; data procured from literature and industry survey/contacts/data.
- Base year used is 2018 and projections for 2025 are provided.

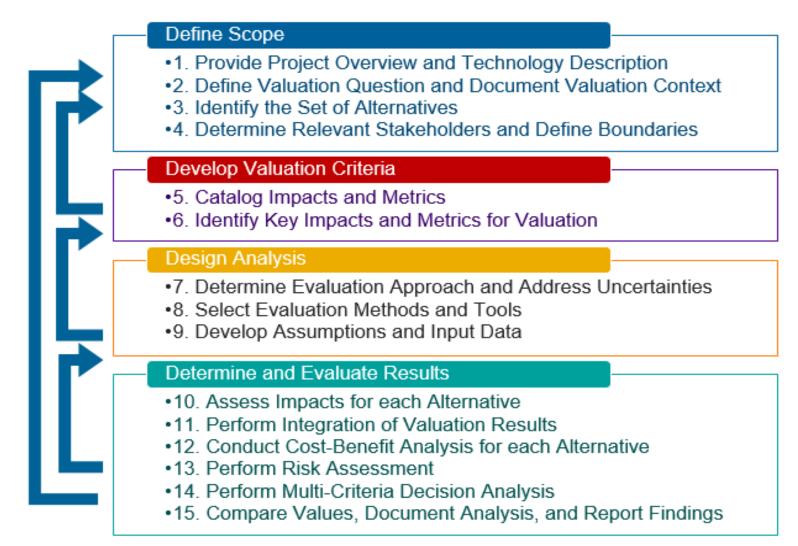

PSH Valuation Guidance Development Goals

- Objective and comprehensive methodology
- Consistent and repeatable valuation approach
- **Transparent** valuation process and results
- Can be applied to different types and sizes of PSH plants
- Accounts for various services and contributions that PSH plants provide to the grid
- Considers PSH benefits and costs over time
- Applies to both traditional and restructured market environments
- Can be used by stakeholders with different perspectives
- Publicly available for use by hydropower industry and stakeholders

Development of PSH Valuation Guidance

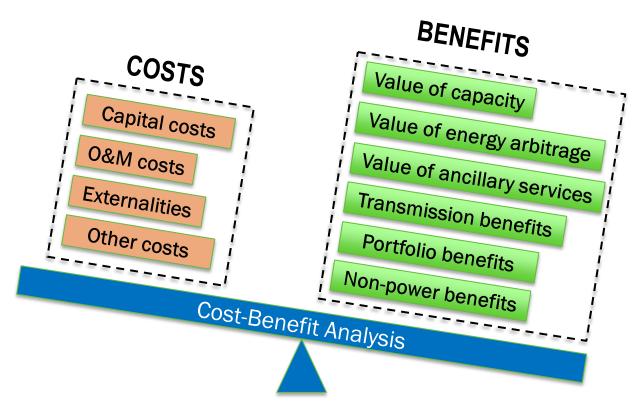
Leveraging numerous current and past efforts in this area

- DOE-funded Grid Modernization Laboratory Consortium (GMLC) projects:
 - GMLC 1.2.4: Valuation Framework
 - GMLC 1.1: Metrics Analysis
- EPRI: The Integrated Grid A Benefit-Cost Framework for DER
- EPRI: Guidebook for C/B Analysis of Smart Grid Demonstration Projects
- Argonne: The Role and Value of Advanced Pumped-Storage Hydropower in the United States
- Other valuation studies (e.g., solar, wind, storage, etc.)


Techno-Economic Studies for Banner Mountain and Goldendale

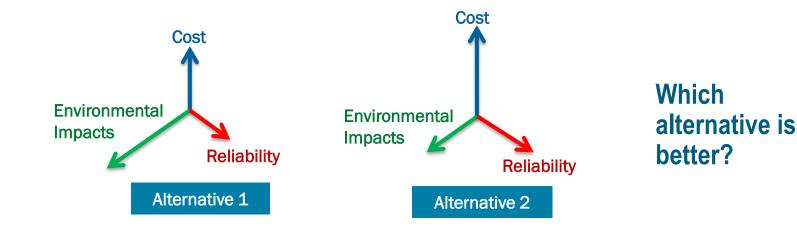
A variety of analyses are carried out to assess the costs and benefits of various PSH services and contributions to the grid:

- ANL: Capacity valuation using AURORA model
- ANL: Historical electricity market analysis (PMAT)
- ANL: Black start service valuation (developing own model)
- NREL: Value of PSH ancillary services: regulation service, contingency reserves, and flexibility reserves (PLEXOS)
- INL: Power system stability services: inertial response, governor response (primary frequency control), transient and small signal stability, voltage support (PSSE)
- NREL: PSH impacts on power system cycling and ramping costs (PLEXOS)
- ORNL: Potential cost and performance impacts of increased PSH cycling and ramping operations (e.g., increased wear and tear of PSH units)
- NREL: Other system-wide effects of PSH operations (e.g., PSH impacts on system production costs, integration of variable energy resources, power system emissions) (PLEXOS)
- PNNL: PSH transmission benefits (congestion relief, transmission investments deferral) (PSSE)
- ORNL: PSH non-energy services (e.g., water management, socioeconomic benefits, and env. impacts)


Proposed PSH Valuation Process

A Cost-Benefit and Decision Analysis Valuation Framework

PSH Valuation Framework – Cost-Benefit Analysis


The results of various techno-economic studies will provide inputs for Cost-Benefit Analysis (CBA)

CBA will be used to calculate the net present value (NPV), benefit-cost (B/C) ratio, etc.

PSH Valuation Framework – Multi-Criteria Decision Analysis

- **Choosing among different alternatives with multiple attributes**
- Many PSH impacts are not easily monetized and have to be expressed in physical units or qualitatively
- How to compare different alternatives that are described by both monetized and non-monetized impacts?
- A decision-support system can help decision-makers choose among different alternatives defined by multiple attributes

Tradeoffs Among Objectives

Key Products of the PSH Valuation Project

- PSH Valuation Guidebook
- Two technical reports illustrating the application of Guidebook methodology for valuation of actual PSH projects

Energy storage cost and performance study

 PSH valuation tool helping the users navigate the PSH valuation process

Main Project Outcomes

- A comprehensive, transparent, consistent, and repeatable valuation methodology
- A cost-benefit and decision analysis framework that allows for valuation of both monetized and non-monetized PSH services and contributions
- Increased understanding of PSH grid value among various stakeholders (utilities and power market operators, PSH developers, regulators, etc.)
- A valuation framework which can easily be generalized and adapted for valuation of other energy storage technologies

Contact:

Vladimir Koritarov

Argonne National Laboratory

9700 S Cass Ave, ES/362

Lemont, IL 60439

Tel: 630-252-6711

koritarov@anl.gov

National Council on Electricity Policy

Kerry Worthington NCEP/NARUC Program Manager

kworthington@naruc.org

www.electricitypolicy.org