NARUC Electrification and Load Forcasting

Low-Emissions Pathways & Buildings

June 1, 2023

Prepared by:

Ryan Jones

EVOLVED ENERGY RESEARCH

Agenda

- High electrification scenarios uncertainty and possibility
- Bottom-up load shape generation based on historical weather years
- Projecting building electrification impacts

High Electrification Scenarios

Forecasting vs. backcasting

- Forecasting: project changes based on expected customer behavior given incentives/technology
- Backcasting: start with an end-point and work backwards to infer customer adoption over time

Energy infrastructure replacement before mid-century

Final energy demand in the U.S. economy

Note: Excludes energy from fossil extraction and refining. Data from AEO2019.

page 5

EVOLVED

ENERGY RESEARCH

Visualizing demand for hydrocarbon fuels

EVOLVED

ENERGY RESEARCH

Electrification is required in all low-carbon pathways

Final energy demand scenario examples

- Final energy demand in the reference scenario drops until 2035 due to vehicle fuel economy improvements and then starts to increase again over the following 15 years as service demand grows
- By contrast, the high electrification scenario (E+) shows sharp declines in all petroleum fuels and pipeline gas due to electrification of transportation and buildings, and to a lesser extent industry.

Princeton Net-Zero America Project

page 8

General conclusions

- Forecasting vs. backcasting electrification can result in very different longterm load forecasts
 - Forecast 'reference' case with 0.2% load growth
 - Back-cast 'low carbon' scenarios see periods with 2-3% load growth
 - Early 2020s may be seen, in retrospect, as a period of maximum load growth uncertainty
- Electrification is required for any feasible low-emissions pathway
 - Timing of electrification has more uncertainty than its long-term scale
- IRA is likely to accelerate electrification trends by 5-10 years but forecasts of impacts differ widely

Projecting load bottom-up

Bottom-up stock turnover models

- EER uses a model called EnergyPATHWAYS, a bottom-up stock accounting model
- The model tracks explicit user decisions about technology adoption and produces final-energy demand and hourly profiles for future years

Example stock-rollover for Light Duty Automobiles

- Lines denote the vintage of the vehicle stock (i.e., when it's placed in service)
- Vintage impacts technology attributes (efficiency and cost) that can change over time
- Many technologies also have service demand that differs by age (new vehicles are driven more than old vehicles)

page 12

Projecting energy demand from the "bottom-up"

Creating hourly electricity load shapes

U.S. sectoral granularity based on EIA surveys

Buildings Franspo						
	Subsector		# Technologies		Subsector	
	commercial air conditioning	12 building types	22		aviation	
	commercial cooking		4		buses	
	commercial lighting		26		domestic shipping	
	commercial other		N/A		freight rail	
cial	commercial refrigeration		18		heavy duty trucks	
Jer	commercial space heating		18	5	international	
L L	commercial unspecified		N/A	ati	shipping	
Ō	commercial ventilation		4	L S	light duty autos	
	commercial water heating		7	dst	light duty trucks	
	district services		N/A	rar	lubricants	
	office equipment (non-p.c.)		N/A		medium duty trucks	
	office equipment (p.c.)		N/A		military use	
	residential air conditioning		13		motorsyclos	
	residential clothes drying		3		notorcycles	
	residential clothes washing		4		passenger ran	
	residential computers and related	3 building types	6		recreational boats	
	residential cooking		3			
a	residential dishwashing		2			
nti	residential freezing		4			
ide	residential furnace fans		N/A			
Res	residential lighting		39			
	residential other uses		14			
	residential refrigeration		6			
	residential secondary heating		N/A			
	residential space heating		18			
	residential televisions and related		5			
	residential water heating		6			

┣ ortation

	Subsector	Sub-category	# Technologies
	aviation		N/A
	buses	3 duty cycles	5
	domestic shipping		N/A
	freight rail		N/A
	heavy duty trucks	2 duty cycles	6
	international		
	shipping		N/A
	light duty autos		10
	light duty trucks	2 types	11
5	lubricants		N/A
	medium duty trucks		6
	military use		N/A
	motorcycles		N/A
	passenger rail	3 types	N/A
	recreational boats		N/A

Industry

	Subsector	Sub-category
	agriculture-crops	4 process types
	agriculture-other	4 process types
	aluminum industry	6 process types
	balance of manufacturing other	9 process types
	bulk chemicals	50 process types
	cement	8 process types
	coal mining	2 process types
	computer and electronic products	10 process types
	construction	3 process types
	electrical equip., appliances, and components	9 process types
	fabricated metal products	9 process types
	food and kindred products	9 process types
	glass and glass products	7 process types
	iron and steel	8 process types
	machinery	9 process types
	metal and other non-metallic mining	2 process types
	oil & gas mining	2 process types
	paper and allied products	7 process types
	petroleum refining	1 process type
	plastic and rubber products	9 process types
	transportation equipment	9 process types
	wood products	9 process types

*Electrolysis load is modeled as an energy supply technology

Sample load shapes for Colorado (high electrification)

page 16

Building electrification impacts

Heating electrification includes many uncertain factors with non-linear impacts on peak load

- Rates of electrification
- Building mass / insulation improvements
- Heat-pumps
 - Sizing
 - Low-temperature performance (cutout)
 - Back-up heating
 - Technology improvement projections
- Spatial diversity factors
- Future climate changes
- Customer behavior (thermostat set-points, flexible load participation)

Assumptions can be synthesized/summarized by estimating the heating equipment utility factor

Building space heating equipment utility factors

- Utility factor defined as average consumption divided by peak
 - 3-10% -- Possible warm climates. In cold climates, this represents a worst-case scenario. It sometimes means underlying assumptions need to be revisited
 - 10-15% -- Our current best guess for utility factors of populations of heat pumps in temperate climates
 - 16%+ -- Likely too high with a strong possibility of underestimating peak load

Electrification profile examples

page 20

Benchmarking peak heating demand

Category	Heating Peak Analysis	Unit
Total number of households	1,970,000	
Annual heating demand per customer 2020	63	MMBtu
Total heating demand 2020	124,934,000	MMBtu
Building shell efficiency improvement to 2050 + HDD trend	17%	
Total heating demand 2050	104.070.022	MMBtu
Average heating demand per customer 2050	53	MMBtu
Number of customers with electric heat	1,700,000	
Heating demand in 2050 for electric customers	89.806.618	MMBtu
Average coefficient of performance assumed on the worst day	1.85	COP
Per customer heat demand on the coldest day	0.44	MMBtu
	740 454	
Heating demand for electric customers on the coldest day	740,451	MMBtu
% of annual heating allocated to the coldest day	0.82%	
System electricity consumed on the worst day	117	GWh
Customer electricity consumption on the coldest day	69	kWh
Peak / average heating profile	1.42	
Space heating peak demand	6,926	MW

- Spreadsheet bottom-up estimates can be used to test building simulation modeling outputs
- High/low bias across input assumptions can change peak load estimates by a wide margin

THANK YOU

www.evolved.energy

Sample load shapes for Maine (high electrification)

page 23

EnergyPATHWAYS sales & stock example

Princeton Net-Zero America Project

EVOLVED ENERGY RESEARCH

Infrastructure transition example: light-duty vehicles

EVOLVED ENERGY RESEARCH

Slower electrification under an emissions constraint results in more electricity demand

- Load is shifted from buildings and transportation to industrial loads associated with fuels production
- Literature is in general agreement that slower electrification pathways increase costs

