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* High electrification scenarios — uncertainty and possibility
* Bottom-up load shape generation based on historical weather years

* Projecting building electrification impacts
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High Electrification Scenarios




Forecasting vs. backcasting &

Forecasting: project changes based on
expected customer behavior given
incentives/technology

Backcésting

\

o . . _ . Present: Future:
Backcasting: start with an end-point and o tlowedoawemdl iend? s
work backwards to infer customer
adoption over time

Energy infrastructure replacement before mid-century

Appliances

AC & Furnace
Vehicles

Boilers

Power plants

2020 2030 2040 2050
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Final energy demand in the U.S. economy Ny
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Note: Excludes energy from fossil extraction and refining. Data from AE02019. page 5



Visualizing demand for hydrocarbon fuels N
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Quads
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22 quads of non-hydrocarbon final energy
demands could be satisfied with zero carbon
electricity

48 quads demand for hydrocarbons with the

following solutions:

1. Drop-in fuel replacements

2. Efficiency, mode shifting, conservation
3. Emissions offsetting

4. Electrification
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Quads

Electrification is required in all low-carbon pathways &
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u.S.
maximum
biomass

supply*

Electricity-derived fuels
replace the residual?

Requires ~6 TW

renewables or ~2.5

TW nuclear plus

~— . .. . .
significant direct air

capture (4x current

U.S. generation) ***

—

*U.S. Billion Ton Study

*** Assumes 50 efficiency from electricity to
hydrocarbon, 50% solar and 50% wind with
capacity factors of 50% and 30% respectively

**Assumes 50-60% conversion efficiency
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Final energy demand scenario examples Sy

* Final energy demand in the REF E E:
reference scenario drops until v
2035 due to vehicle fuel = steam
economy improvements and &0
then starts to increase again 55
over the following 15 years as 50
service demand grows .
* By contrast, the high g v o - ipeline gas
electrification scenario (E+) g bl oz plpeline gas
shows sharp declines in all 30
petroleum fuels and pipeline 25
gas due to electrification of -
transportation and buildings, -
and to a lesser extent industry. . gasoline fuel gasoline el _ gasoline fuel
, _ o sedstockscoal & coking ol petTOChericalfeedstoc s
0 Ipg fuel and feedstocks ‘ Ipg fuel and feedstocks Ipg fuel and feedstocks

2020 2025 2030 2035 2040 2045 20502020 2025 2030 2035 2040 2045 20502020 2025 2030 2035 2040 2045 2050

Princeton Net-Zero America Project

Excludes fossil extraction and refining
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General conclusions & =

* Forecasting vs. backcasting electrification can result in very different long-
term load forecasts

* Forecast ‘reference’ case with 0.2% load growth
* Back-cast ‘low carbon’ scenarios see periods with 2-3% load growth

* Early 2020s may be seen, in retrospect, as a period of maximum load growth
uncertainty

* Electrification is required for any feasible low-emissions pathway
* Timing of electrification has more uncertainty than its long-term scale

* |IRA is likely to accelerate electrification trends by 5-10 years but forecasts
of impacts differ widely
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Projecting load bottom-up




Bottom-up stock turnover models S

* EER uses a model called EnergyPATHWAYS, a bottom-up stock accounting model

* The model tracks explicit user decisions about technology adoption and produces
final-energy demand and hourly profiles for future years

EnergyPATHWAYS Vehicle miles

- traveled
Population ™ Demand B Energy Service
Drivers Demand , Hourly MMBtu fuel

Miles per GGE

demanded
Energy
Demand

(by vintage) Technology
Efficiency

Energy Service |
Cars on the road Technology Efficiency Capacity
(by vintage) 1 Stock Turnover MMBtu/mile
Expansion

*GGE — Gallon of gas equivalent
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Example stock-rollover for Light Duty Automobiles &

o e e * Lines denote the vintage of the
vehicle stock (i.e., when it’s
placed in service)

150M
140M

130M

== - * Vintage impacts technology
o S attributes (efficiency and cost)
o o = that can change over time

o _ _ Electric

o _ i * Many technologies also have
- Al = L S service demand that differs by

age (new vehicles are driven
more than old vehicles)

120M

110M

60M

S50M

2o Gasoline Internal |
20M Combustion Engine Vehicles Plug-in Hybrid

20M

Electric Vehicles

10M
oM

2014 2016 2018 2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040 2042 2044 2046 2048 2050
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Projecting energy demand from the “bottom-up” &

EVOLVED
ENERGY
RESEARCH

Residential Demand

(lumens/year)
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0 Infrastructure stock
rollover model keeps
identi track of “stuff”
os Total Residential rack or stu
Final Energy for Lighting (i.e., number of light
a bulbs by type)
L _ |
I

Scenario-based, bottom-
up energy model (not
optimization-based)
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Creating hourly electricity load shapes N/
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Unitized
004 Lighting Shape
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EnergyPATHWAYS projects future load shapes bottom-up.
Annual energy is multiplied by a unitized service demand shape
for each subsector and summed across each model region. In
the first model year the bottom-up shape is benchmarked
against a top-down shape from historical electric utility data. A
series of hourly ‘reconciliation factors’ are created from this
comparison that represent both bias and random noise not
observed in the (often simulated) end-use data. These
reconciliation factors are applied to future years.

Additional demand

Projected
=gy |ighting shape
Projected EV

shape

Projected
heating shape

Projected dryer
shape

4

subsectors
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U.S. sectoral granularity based on EIA surveys

+ Buildings l@—:% Transportation Industry

-E_- [ Subsector ___| Sub-category | #Technologies il |

commercial air conditioning aviation N/A agriculture-crops 4 process types
commercial cooking 4 buses 3 dutycycles 5 agriculture-other 4 process types
commercial lighting 26 domestic shipping N/A aluminum industry 6 process types
B commercial other § N/A freight rail N/A balance of manufacturing other 9 process types
-8 commercial refrigeration = 18 heavy duty trucks 2 duty cycles 6 bulk chemicals 50 process types
g commercial space heating 2 18 ¥ international CEMEE 8 process types
=8 commercial unspecified 2 N/A 8 shipping N/A coal mining : 2 process types
i8] commercial ventilation 2 4 ‘g light duty autos 10 computer. and electronic products 10 process types
commercial water heating S 7 2 light duty trucks 2 types 1 CORSEKEHONS ' 3 process types
district services N/A B |Lbricants N/A > electrical equip., appliances, and components 9 process types
office equipment (non-p.c.) N/A = dium duty truck 6 § fabricated metal products 9 process types
office equipment (p.c.) N/A mﬁ IUMICELVALIACKS s food and kindred products 9 process types
residential air conditioning 13 i RRES 2 @ glass and glass products 7 process types
residential clothes drying 3 motorcycles ' N/A iron and steel 8 process types
residential clothes washing 4 passenger rail 3 types N/A machinery 9 process types
residential computers and related 6 recreational boats N/A metal and other non-metallic mining 2 process types
residential cooking . L oil & gas mining 2 process types
= residential dishwashing o8 2 paper and allied products 7 process types
t=N residential freezing E 4 petroleum refining 1 process type
KN residential furnace fans £ N/A plastic and rubber products 9 process types
I residential lighting % 39 transportation equipment 9 process types
@ residential other uses 2 14 wood products 9 process types
:zz:j::;;:: ;Zf:zizr::;ofreating ﬁl/A *Electrolysis load is modeled as an energy supply technology
residential space heating 18
residential televisions and related 5
residential water heating 6
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Sample load shapes for Colorado (high electrification) SOE
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Building electrification impacts




Heating electrification includes many uncertain @ i
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factors with non-linear impacts on peak load

Rates of electrification

Building mass / insulation improvements
Heat-pumps

¢ Sizing

* Low-temperature performance (cutout)

* Back-up heating

* Technology improvement projections
Spatial diversity factors

Future climate changes

Customer behavior (thermostat set-points, flexible load
participation)

Assumptions can be
synthesized/summarized by
estimating the heating
equipment utility factor
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Building space heating equipment utility factors S5

* Utility factor defined as average consumption divided by peak

* 3-10% -- Possible warm climates. In cold climates, this represents a worst-case
scenario. It sometimes means underlying assumptions need to be revisited

* 10-15% -- Our current best guess for utility factors of populations of heat pumps in
temperate climates

* 16%+ -- Likely too high with a strong possibility of underestimating peak load
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Electrification profile examples
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Benchmarking peak heating demand S
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Category Heating Peak Analysis Unit
Total number of households 1,970,000

Annual heating demand per customer 2020 63 MMBtu
Total heating demand 2020 124,934,000 MMBtu
Building shell efficiency improvement to 2050 + HDD trend 17%

Total heating demand 2050 104,070,022 MMBtu
Average heating demand per customer 2050 53 MMBtu
Number of customers with electric heat 1,700,000

Heating demand in 2050 for electric customers 89,806,618 MMBtu
Average coefficient of performance assumed on the worst day 1.85 cop
Per customer heat demand on the coldest day 0.44 MMBtu
Heating demand for electric customers on the coldest day 740,451 MMBtu
% of annual heating allocated to the coldest day 0.82%

System electricity consumed on the worst day 117 GWh
Customer electricity consumption on the coldest day 69 kWh
Peak / average heating profile 1.42

Space heating peak demand 6,926 MW

Spreadsheet bottom-up estimates can be
used to test building simulation modeling
outputs

High/low bias across input assumptions can
change peak load estimates by a wide
margin
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Sample load shapes for Maine (high electrification) S

Sector (group)
B buildings and industry
transportation
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EnergyPATHWAYS sales & stock example Sy
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Infrastructure transition example: light-duty vehicles
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Slower electrification under an emissions
constraint results in more electricity demand

@_} o
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* Load is shifted from buildings
and transportation to industrial
loads associated with fuels

production

 Literatureis in general
agreement that slower
electrification pathways

increase costs
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