

Committee on Energy Resources & the Environment

Can You Call on Your Capacity in a Crisis?

This session will begin at 1:45PM

Hon. Charlotte A. Mitchell Chair North Carolina Utilities Commission

PANELISTS

Tim Burdis Senior Manager State Policy Solutions PJM Gabe Murtaugh Storage Sector Manager CAISO

Libby Kirby Transmission Operations Electrical Engineer Bonneville Power Administration

Lynn Hecker Senior Manager – Resource Adequacy Policy MISO

MISO Non-thermal Resource Accreditation Overview

2022 NARUC Summer Policy Summit

July 19, 2022

Changing resource portfolio with rapid growth of intermittent resources drives continued risk profile shifts and an increased need for resource accreditation reforms to address reliability imperative

MISO is pursuing continued accreditation enhancements for non-thermal resources

Resource Type	Current Annual Accreditation	Seasonal Accreditation proposed in MISO's 2021 RA reform filing	Further Enhancements currently underway
Wind	Annual ELCC and then allocate to individual wind resources based on performance over 8 peak summer days per year	Seasonal ELCC and then allocate to individual wind resources based on performance over 8 peak days per season	Evaluate availability-based accreditation approaches, including probabilistic, deterministic, and blended
Solar	Three-year, historical availability- based hours 15,16,17 EST from June to August	Three-year, historical availability- based hours 15,16,17 EST for spring, summer and fall. Hours 8, 9, 19, 20 EST for winter	
Demand Response	Lead time > $6 \le 12$ hour credited 50% until 2023 Annual calls $\ge 5 < 10$ credited 80% and calls ≥ 10 credited 100%	Summer/ Winter: Lead time ≤ 6 hours and calls ≥ 5 credited 100% Spring/ Fall: Lead time ≤ 6 hours and calls ≥ 3 credited 100%	Evaluate notification time and availability during times of need
Storage	Accredited based on outage rates	Seasonal outage rates	Evaluate availability during times of need
6	ELCC = Effective Load Carrying Capability		🛞 MISO

Contact Information

Lynn Hecker Senior Manager, Resource Adequacy Policy and Analytics MISO <u>Ihecker@misoenergy.org</u>

NARUC Capacity Slides

Libby Kirby

BPA Wind Fleet Capacity Factor vs. Temperature

Libby Kirby, Bonneville Power Administration, eakirby@bpa.gov

We can see similar variation in temperature bins with higher average capacity factors

25

10

0

10

20

30

40

50 Capacity Factor (%) 60

Distribution of Wind Capacity Factor when Portland Temperature is between 50 and 60 Degrees

Developing Storage and Strategic Vision for a Carbon Neutral Grid

July 19, 2022 NARUC Summer Policy Summit Gabe Murtaugh, Storage Sector Manager

Developers are building large amounts of new energy storage on the CAISO grid California has a goal to generate electricity in a 100% greenhouse gas free manner by 2045

- Energy will come from renewables
- Storage is required to save energy for consumption when generation is less than loads
- Storage is rapidly growing, because of state procurement mandates
- CAISO currently has 3,500 MW of installed storage
 - Most new storage is lithium-ion and most is 4-hour duration

The CAISO expects a massive buildout of storage to meet California's 2045 GHG reduction

Storage primarily provides 'energy shifting' services, and overall actual performance is

COMMENTS OR QUESTIONS

Gabe Murtaugh Storage Sector Manager, California ISO gmurtaugh@caiso.com

Thanks for attending. We look forward to seeing you here at 3:15 PM for the next ERE session.