

Staff Subcommittee on Clean Coal & Carbon Management Staff Subcommittee on Gas

Joint Session: "The Future of Blue Hydrogen"

This session will begin at 3:00 pm ET

"The Future of Blue Hydrogen"

Co-Moderators:

James Branscomb, Senior Rate Engineer, Wyoming Public Service Commission

Andreas Thanos, Gas Policy Specialist, Massachusetts Department of Public Utilities

Participants:

John Litynski, Deputy Director for Advanced Fossil Technology Systems, Office of Fossil Energy, U.S. Department of Energy

Sharon Tomkins, Vice President, Strategy and Engagement and Chief Environmental Officer, Southern California Gas Company

Ron Kent, Advanced Technologies Development Manager, Southern California Gas Company

Chris San Marchi, Hydrogen and Metallurgical Science, Sandia National Laboratories

NARUC Annual Meeting - The Future of Blue Hydrogen

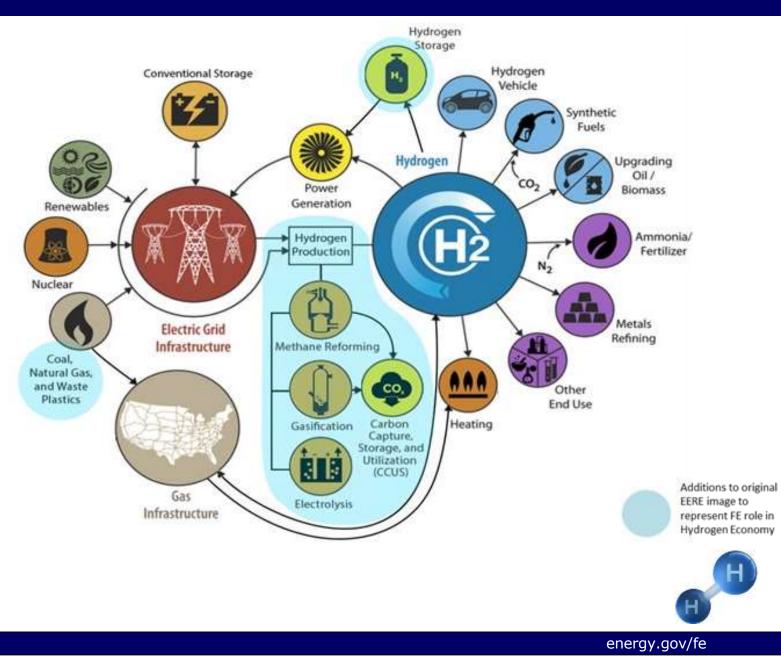
NARUC Blue Hydrogen Panel

John Litynski Deputy Director U.S. DOE Advanced Fossil Technology Systems

Nov 5, 2020

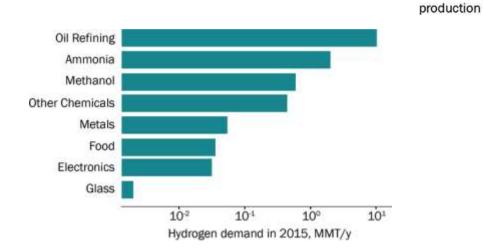
State of Hydrogen Production Today

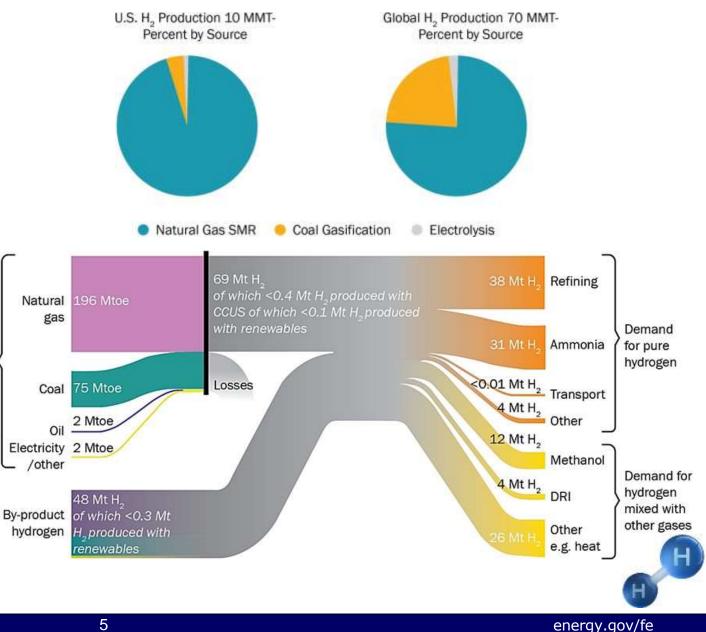
Currently 99% of 10 MMT in the U.S. supplied by fossil fuels – least cost


- 96% by SMR
- 3% by gasification
- 1% by electrolysis

70 MMT generated globally

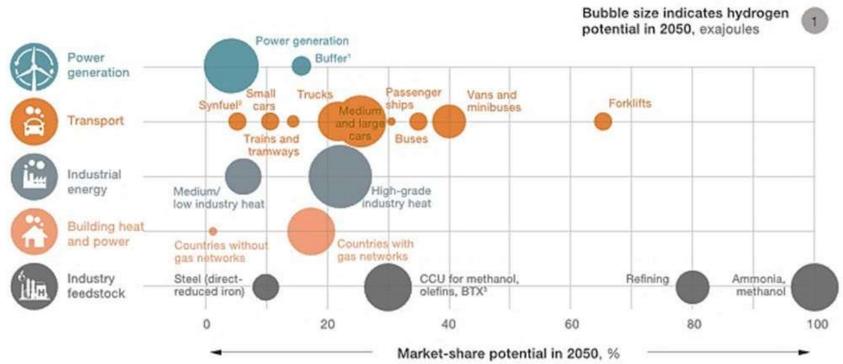
- 76% by SMR
- 22% by gasification
- 2% by electrolysis


Small fraction includes CCUS


Economics dominates generation mix

Current Hydrogen Demand

- Current demand is mostly for oil refining and chemical production.
- Metals, electronics and glass production are main industrial sources of demand.
- Food production is main consumer source of demand.
- Transportation, building heating and electricity generation are areas of demand growth for a decarbonized economy.



Dedicated

Potential Hydrogen Demand in 2050

- Transport, buildings, and power sectors all have the potential to use cost-competitive hydrogen.
- Fossil fuels with CCUS will support emerging carbon free market opportunities with low-cost hydrogen.
 - Utility scale hydrogen based power generation/energy storage
 - Steel and advanced alloys manufacturing
 - Cement, fertilizer and chemicals production
 - Fuel for marine, rail, and heavy-duty vehicle applications

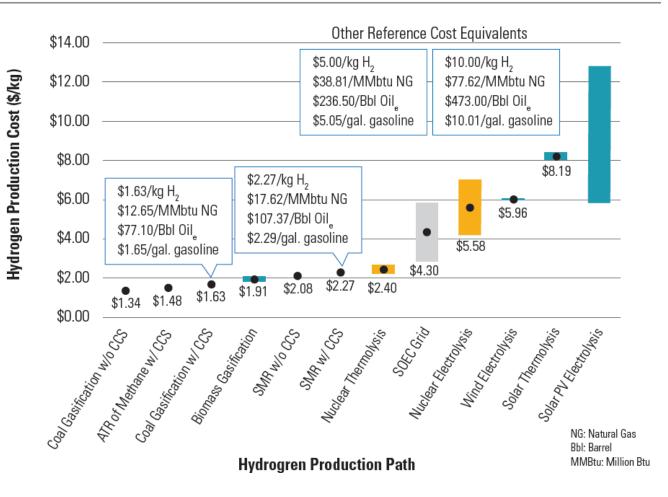
Hydrogen potential by market share in 2050, %, exajoules

% of total annual growth in hydrogen and variable renewable-power demand. For aviation and freight ships. 'Carbon capture and utilization; % of total methanol, olefin, and benzene, toluene, and xylene (BTX) production using olefins and captured carbon.

Examples of Scale:

1- Hydrogen for the U.S. transport sector would require 200 MMT of hydrogen 20X current US production
 Transportation fleet expected to increase 2-3X by 2050

2 - Replacing all NG power in NE requires ~10MT of hydrogen


energy.gov/fe

Economics of Hydrogen Production

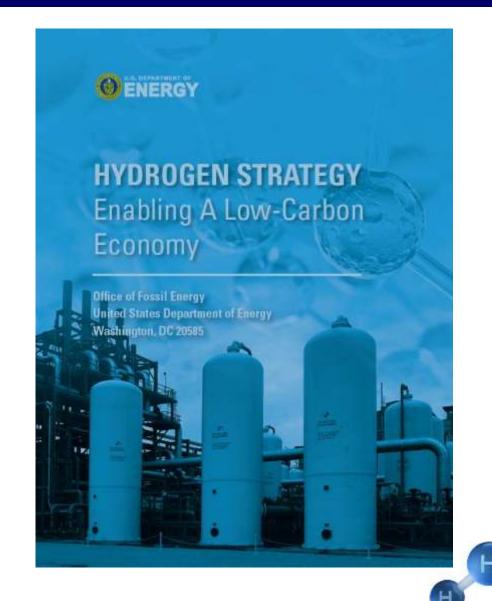
H₂ production from fossil fuels is the least expensive source, even with CCUS

Gasification with CCUS could be carbon neutral or even negative when co-firing biomass

R&D advances could significantly reduce SMR and gasification costs further **Figure 5**. Current Hydrogen Production Cost Ranges and Averages by Technology and Equivalent Prices for Fossil Sources with CO₂ Capture and Storage^{9,10}

Solar Hydrogen Production: Processes, Systems and Technologies, 1st Edition. Editors: Francesco Calise, Massimo Dentice D'Accadia, Massimo Santarelli, Andrea Lanzini, Domenico Ferrero. Academic Press. August 2019. PNNL "H2 Hydrogen Tools." Accessed online: <u>https://h2tools.org/hyarc/calculator-tools/energy-equivalency-fuels</u>

energy.gov/fe


7

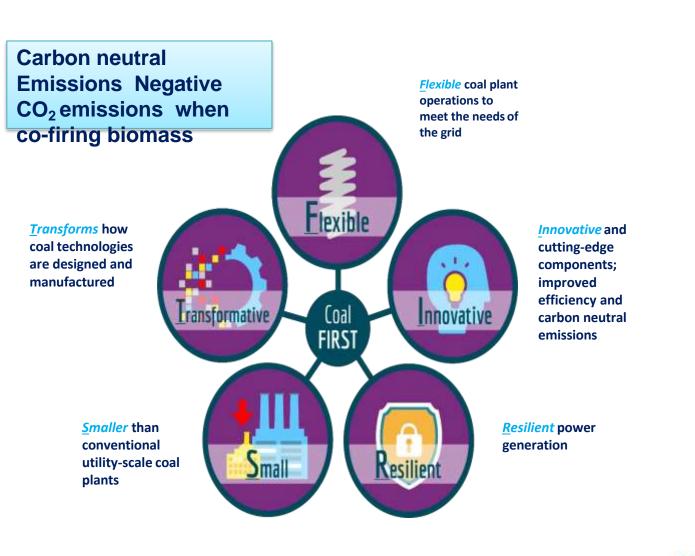
DOE Fossil Energy Investments in Blue Hydrogen R&D

Over the past two decades FE has invested ~\$1.3B in lowcost, carbon neutral hydrogen production technologies, including Turbines, Gasification, Solid Oxide Fuel Cells, and Pre Combustion R&D

Aligning H2 R&D in Office of Fossil Energy

- Carbon-Neutral Hydrogen Production Using Gasification and Reforming Technologies
- Large Scale Hydrogen Transportation Infrastructure
- Large Scale On-site and Geological Hydrogen Storage
- Hydrogen Use for Electricity Generation, Fuels, and Manufacturing.

FE Program Elements Supporting Hydrogen Strategy



21st Century Power Plants - Coal FIRST: Enabling a Carbon Free Hydrogen Economy

(Flexible, Innovative, Resilient, Small, Transformative)

- Carbon neutral, including net negative CO₂ emissions with co-firing coal and biomass, power plant R&D effort in the world
- Capable of producing power and/or hydrogen for polygeneration
- Coal, biomass, and plastics with CCUS excellent and economical feedstocks for hydrogen
- Contributes to IEA minimum cost scenario for deep CO₂ emissions -carbon capture
- Provides low cost power generation; economically competitive
- Potential to sustain U.S. coal communities; provide a source of high value exports

energy.gov/fe

Hydrogen Production Gasification Project FEED Studies – Net Negative Emissions

Electric Power Research Institute, Inc. (Palo Alto, CA)

- Gasification of Coal and Biomass: The Route to Net-Negative-Carbon Power and Hydrogen Integrated design study on an oxygen-blown gasification system coupled with water-gas shift, pre-combustion CO2 capture, and pressureswing adsorption working off a coal/biomass mix to yield high-purity hydrogen and a fuel off-gas that can generate power.
- Nebraska Public Power District
- CO₂ Storage: enhanced oil recovery and saline sequestration
- Co-feed corn Stover and possibly other biomass and waste plastics

Wabash Valley Resources, LLC (West Terre Haute, IN) - Wabash Hydrogen Negative Emissions Technology -

Complete System integrated design study for redeveloping the existing Wabash Valley Resources coal gasification site in West Terre Haute, Indiana, into a Coal FIRST power plant for flexible fuel gasification-based carbon-negative power and carbon-free hydrogen co-production.

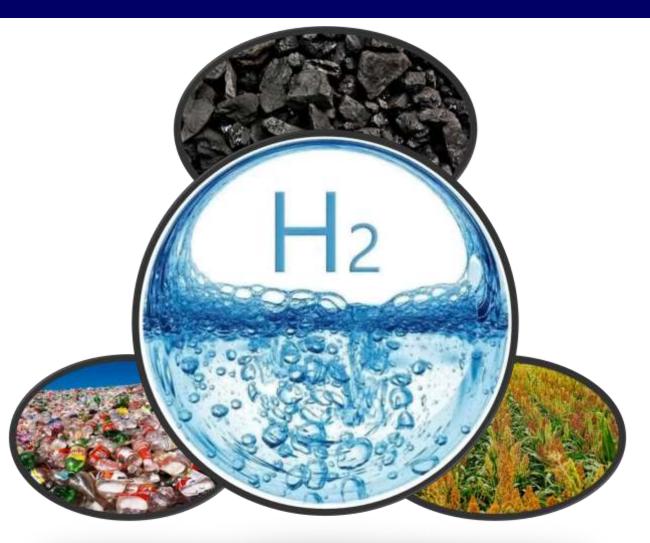
- Facility: Wabash Gasification Facility
- CO₂ Storage: Saline sequestration
- Co-feed woody biomass and/or agricultural residue and petroleum waste plastics

Production - Reforming, Gasification, and Pre-combustion Capture

Autothermal reforming

Alternative Feedstocks

- Waste Plastics as Gasifier Feedstock
- Net Negative CO₂ w/ Biomass Blending

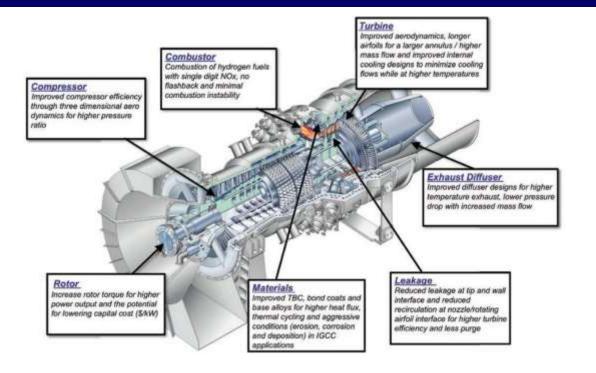

Advanced Technologies

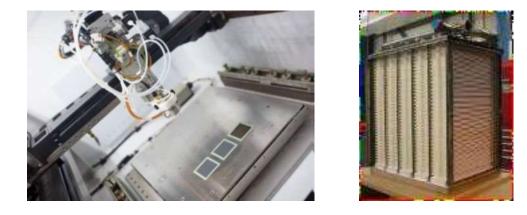
- Ultra High-Pressure Gasifier
- Microwave assisted gasification systems
- Materials development (materials and catalysts)

Pre-combustion Capture

- Integrated sulfur and CO₂ removal
- Advanced membranes and Sorbents

Polygeneration Systems – Flexible operation to meet demand



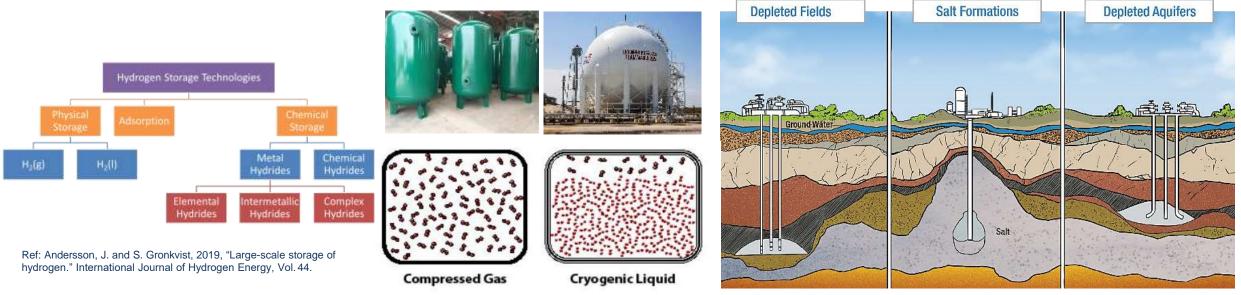

Hydrogen Use - Turbines and Reversible SOFCs

Future work – reduce CAPEX and OPEX

- Science and engineering knowledge of stable high temperature, low NO_x hydrogen combustion.
- Combustion of carbon neutral fuels (i.e. NH₃, ethanol vapor).
- Apply H₂ combustion engineering to utility scale and aero derivative machines – new and retrofit
- Aim for 100% hydrogen machine.
- Prior and on-going SOFC R&D supported by FE will provide the technology basis for SOEC development going forward
- Potential for hybrid systems to produce hydrogen in SOEC mode and electricity in SOFC mode

Meeting the demand for flexible low carbon power

Hydrogen Storage Technologies


SOTA - High pressure tanks and as a liquid requires cryogenic temperatures (-423°F) – physical storage

Hydrogen infrastructure could require geologic bulk storage to handle variations in demand throughout the year And bulk onsite storage for emergency fuel supply during extreme events

Technology Advancement necessary in physical and chemical storage

Underground geologic storage of low-pressure gaseous hydrogen necessary

- Salt caverns, depleted oil and gas reservoirs, aquifers, and hard rock caverns.
- Regional characterization and field laboratories to validate geologic storage

energy.gov/fe

Hydrogen Distribution

- Hydrogen is currently distributed through three methods:
 - Pipelines: While the least-expensive way to transport large volumes of hydrogen, there are only about 1,600 miles of U.S.
 pipelines dedicated for hydrogen delivery.
 - High-Pressure Tube Trailers: Transporting compressed hydrogen gas by truck, railcar, ship, or barge in high-pressure tube trailers is expensive and used primarily for distances of <200 miles.
 - Liquefied Hydrogen Tankers: Cryogenic liquefaction is an expensive process that enables hydrogen to be transported more efficiently over longer distances by truck, railcar, ship, or barge.

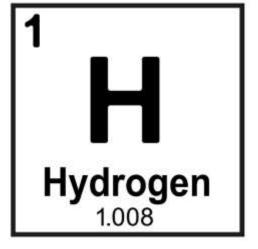
- Existing domestic natural gas pipeline infrastructure has the potential to expand the transportation of hydrogen.
 - o Blending hydrogen into natural gas pipeline networks is a potential option for delivering pure hydrogen to markets pipelines can handle up to 30% hydrogen blends without significant modifications or detrimental effects.

energy.gov/fe

The Future of Blue Hydrogen

2020 NARUC Annual Meeting & Education Conference Bridging the Divide

11/05/2020


17

Hydrogen Drivers

GHG emissions mandates

FCEVs

Curtailment of wind and solar electricity

SoCalGas Renewable Gas Goals

- California Law
 - 2030: 40% below 1990 levels (SB 32, 2015)
 - 2050: 80% below 1990 levels
 (EO B-30-15 and EO S-3-05)
 - 2045: Carbon neutrality and net negative thereafter (EO B-55-18)
- SoCalGas commitment:
 - 2022: 5% Renewable Gas
 - 2030: 20% Renewable Gas

SoCalGas' 40 Million Ton Challenge

SoCalGas Climate Registry CO₂ Emissions

- Unverified 2018 Scope 1 emissions: 1,789,720 MTCO_{2e}
- Unverified Scope 2 (from purchased electricity): 21,647 MTCO_{2e}
- Verified Scope 3 (CARB Subpart NN combustion emissions for gas delivered to customers): 39,890,211 MTCO_{2e}
- 18.8 Mcf NG = 1 metric ton CO_2
- Global CO₂ Emissions = 40 Gt/yr

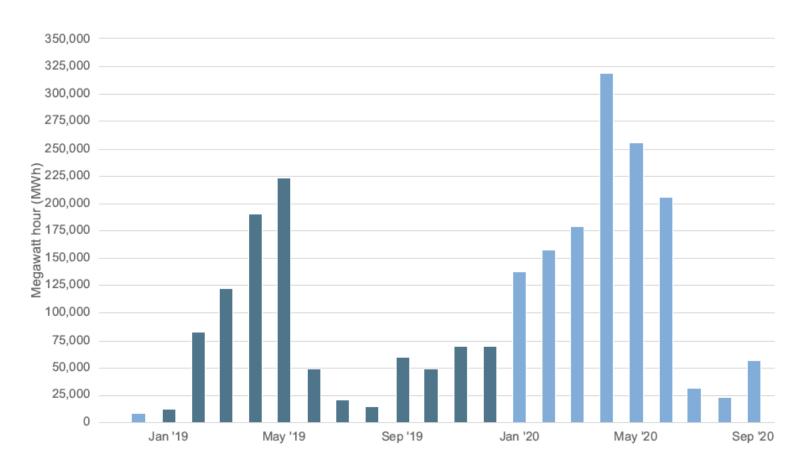
National Hydrogen Scenarios

H2USA Locations Roadmap Working Group

DOE/NREL

National Hydrogen Scenarios 2035 Scenario

- 1,500–3,300 hydrogen stations nationally
- 1.3 million to 3.4 million kg/day H2 production capacity
- 1.8 million to 4.5 million FCEVs
- \$3.0 billion to \$9.2 billion in revenues Assuming average hydrogen prices of \$8-\$10 per kg
- The largest and most robust station networks would initially be a select number of major urban areas


Source: https://www.nrel.gov/docs/fy18osti/71083.pdf

Curtailed Wind and Solar Electricity

2020 Jan-Sept Curtailments: 1.3 TWh

CAISO Wind and solar curtailment totals by month

Updated as of 10/12/2020

www.caiso.com/informed/Pages/ManagingOversupply.aspx

Green Hydrogen Challenges

- Energy density
 - H2 = NG/3
- Compatibility with existing systems
- Cost
 - \$3/MMBtu = 1¢/kWh
 - Dependence on low-cost electricity
 - Intermittency of renewable power
 - Antiquated dispatch systems
 - Low duty cycle of renewable electrolysis systems

1
Hydrogen
1.008


Water Electrolysis

Blue Hydrogen Strategies

- Low-cost, modular, point of use, electric SMR
- Co-production of H2 & C
- Monetizing carbon
- Methanation

STARS Compact SMR

Originally developed to operate on concentrated solar thermal energy

Demonstrated a SDSU Brawley

> 70% Solar to chemical energy conversion.

STARS Compact SMR

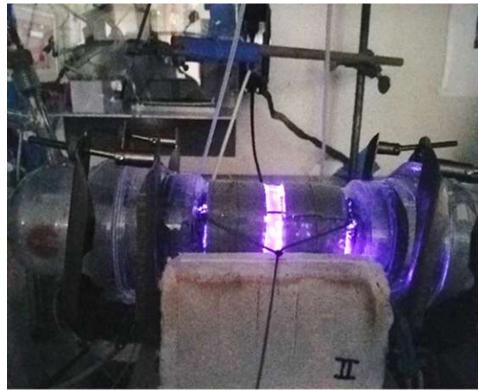
SoCalGas is working to install and operate the "STARS," a 3D printed, microchannel hydrogen production system here in Southern California.

The reactor can operate using either concentrated solar thermal energy or electric induction heating, or both.

A single compact (12" x 1") reactor can produce more than 30 kg/d hydrogen (20 barg) at the point-of-use with production costs below \$3/kg (assuming \$3/MMBtu NG).

Low-cost hydrogen is essential.

This microchannel chemical process "chip" and heat exchanger is a technology platform that can be used for many reactions such as CO2 reduction.



Catalytic Non-Thermal Plasma SMR

JPL and SoCalGas have developed a very compact device that uses low-temperature plasma to catalyze the SMR reaction

We are now in the process of developing an scaled-up system that, if successful, may make point-of-use hydrogen production a reality.

- Conversion energy efficiency: > 75%
- Startup time:< 30 minutes;
- Low-temperature operation
- Subscale unit production capacity: ~ 1Kg H₂/d
- Full-scale production capacity: 5kg/d
- Production Cost: \$ 2 \$4 /kg H₂

CNTP SMR Reactor

 Dielectric barrier discharge (DBD) or catalytic non thermal plasma (CNTP) technology can be used for many reactions such as CO2 reduction.

28

Monetizing Carbon

29

CCS / CCUS Federal Support

- Since FY2010, Congress has provided more than \$5
 billion total in appropriations for DOE CCS-related activities. The annual DOE budget for CCS in 2019 was \$727 million.
- The Bipartisan Budget Act of 2018 amended Section
 45Q, increasing the tax credit from \$20 to \$50 per ton of CO₂
 - For permanent sequestration, the tax credit was increased from \$10 to \$35 for EOR purposes
 - Removed the 75-million-ton cap on the total amount of CO₂ injected underground, among other changes.

SoCalGas CCS / CCU RD&D

CO2 Capture and Use Pathways

Pathway ^a	Removal and/or capture [®]	Utilization product	Storage ^{ed} and likelihood of release (high/low)	Emission on use ¹ or release during storage ⁰
(1) Chemicals from CO ₂	Catalytic chemical conversion of CO ₂ from flue gas or other sources into chemical products	CO ₂ -derived platform chemicals such as methanol, urea and plastics	Various chemicals (days/ decades) – high	Hydrolysis or decomposition
(2) Fuels from CO ₂	Catalytic hydrogenation processes to convert CO ₂ from flue gas or other sources into fuels	CO ₂ -derived fuels such as methanol, methane and Fischer-Tropsch- derived fuels	Various fuels (weeks/ months) - high	Combustion
(3) Products from microalgae	Uptake of CO ₂ from the atmosphere or other sources by microalgae biomass	Biofuels, biomass, or bioproducts such as aquaculture feed	Various products (weeks/ months) - high	Combustion (fuel or consumption (bioproduct)
(4) Concrete building materials	Mineralization of CO ₂ from flue gas or other sources into industrial waste materials, and CO ₂ curing of concrete	Carbonated aggregates or concrete products	Carbonates (centuries) - low	Extreme acid conditions
(5) CO ₇ -EOR	Injection of CO ₂ from flue gas or other sources into oil reservoirs	Oil	Geological sequestration (millennia) - low ^a	n.a.
(6) Bicenergy with carbon capture and storage (BECCS)	Growth of plant biomass	Bioenergy crop biomass	Geological sequestration (millennia) – low*	n.a.
(7) Enhanced weathering	Mineralization of atmospheric CO ₂ via the application of pulverized silicate rock to cropland, grassland and forests	Agricultural crop biomass	Aqueous carbonate (centuries) - low	Extreme acidic conditions
(8) Forestry techniques	Growth of woody biomass via afforestation, reforestation or sustainable forest management	Standing biomass, wood products	Standing forests and long-lived wood products (decades to centuries) - high	Disturbance, combustion or decomposition
(9) Soil carbon sequestration techniques	Increase in soil organic carbon content via various land management practices	Agricultural crop biomass	Soil organic carbon (years to decades) - high	Disturbance or decomposition
(10) Biochar	Growth of plant biomass for pyrolysis and application of char to soils	Agricultural or bioenergy crop biomass	Black carbon (years to decades) – high	Decomposition

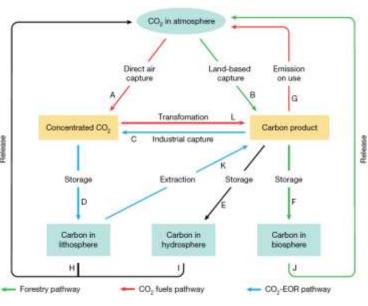


Fig.2 Carbon dioxide utilization and removal cycle.

*Storage durations represent best-case scenarios. For instance, in CO₂ EOR, if the well is operated with complete recycle, the CO₂ is trapped and can be stored or

more¹⁷. This is also relevant only for conventional operations.

"Release during geological storage is usually a consequence of engineering implementation error.

"Emission on use corresponds to step G in Fig. 2.

Release during storage corresponds to steps H. I or J in Fig. 2.

"The letters stated are the steps from Fig. 2 that comprise the example cycle.

Source: Hepburn, C., Adlen, E., Beddington, J. et al. The technological and economic prospects for CO2 utilization and removal. Nature 575, 87–97 (2019). https://doi.org/10.1038/s41586-019-1681-6

RD&D Program CCUS

20 Projects

"Flooding the zone!"

General	Team	Technology	Principal Investigator	TRL	Years to Commercial Pilot
Methane Pyrolysis	PNNL, WVU, SCG DOE	Fluidized bed, microwave	John Hu Rob Dagle	4	4
	Stanford, SCG DOE	Thermocatalyic	Arun Majumdar	2	8
	Xerox, Parc, SCG DOE	Metal Fog	Jessy Rivest	3	5
	C-ZERO, SCG, SDG&E, Shell, DOE	Molten Salt	Zach Jones	5	6
	Monolith Materials (SCG Monitoring)	Fluidized bed, high temperature electic furnace	Pete Johnson	9	0
Electrochemical	Caltech, JCAP, SCG DOE	BPM Electrodialysis seawater CO ² recovery	Chengxiang Xiang	3	6
	Opus 12, SCG DOE	Converting CO ² to CH4, and plastics	Etosha Cave	7	4
	JPL, Susteon, Newcastle U, SCG DOE/NETL	Catalytic Non-Thermal Plasma (CNTP) assisted conversion of CO ² and alkane to alkene and CO	S. James Zhou Raghubir Gupta	4	5
Sorbent-based Point- source CO ₂ Separation	LLNL, Xebec, SCG DOE/BETO	Low-cost composite sorbents	Sarah Baker	7	2
	Susteon, Svante, LADWP, SCG DOE/ARPA-E	Rapid temperature swing adsorption carbon capture technology for optimal operation of fossil power plants	S. James Zhou Raghubir Gupta	8	3
Reactive CO ² Capture	PNNL, WVU, SCG DOE	Integrated capture and conversion of CO ² to methanol (ICCCM) process technology	David Hilibrandt Rob Dagle	3	5
	LLNL, Stanford, SCG DOE/BETO	Electromethanogenesis	Sarah Baker Alfred Spormann	5	6
	NREL, SCG, Electrochaea DOE/BETO	Water electrolysis with biomethanation	Kevin Harrison Nancy Dowe	9	2
	UCSD/Scripps IO, SCG	Capture and reuse of CO ² and NO ^x from stationary engine flue-gas for algae production	Dominick Mendola	8	5
	Susteon, Polytechnique Montreal, PNNL, Johnson Matthey (DOE Proposal)	Converting methane and CO ₂ into methanol and DME using a microchannel reactor system	Raghubir Gupta	3	5
	Brimstone Energy, PG&E, Breakthrough Energy Ventures, Chevron	Electrolysis of SO ² and water for the efficient co- production of sulfuric acid and hydrogen. Integration of sulfuric acid by-product for minerals leaching and CO ² emissions mitigation in cement production	Cody Finke	3	5
Direct Air Capture	Electricore, Inc., Climeworks, Svante, Wintec, SCG, DOE	Sorption media	Deborah Jelen	7	3
	IWVC, PNNL, SCG DOE	Combined water and CO2 direct air capture system	Jamie Holladay	5	5
	Susteon, U of Wyoming SCG DOE	Low regeneration temperature amine doped solid sorbents catalyzed by ionic liquid	S. James Zhou Raghubir Gupta	3	7
Geological CO2 Sequestration	Clean Energy Systems, Schlumberger, SCG	GTI oxygen-blown biomass gasification, oxyfuel CO combustion, geological CO ² injection	Keith Pronske	8	3

32

Methanation

33

NREL, SCG Integrating Water Electrolysis

with

Biomethanation

 Using the renewable H₂ and CO₂ in a downstream methanation process to produce renewable methane and water.

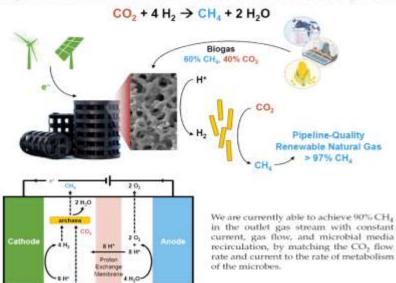
 $4H_2 + CO_2 \xrightarrow{Biocatalyst} CH_4 + 2H_2O + Heat$

- Methanation is <u>important</u> because it
 - Enables higher penetration of renewables by provides long-duration energy storage using the NG network
 - Synthetic methane meets pipeline quality standards and has **3x more energy** than H₂ by volume
 - Recycles CO₂ from waste streams from ethanol refineries, dairies, wastewater, breweries
 - Scalable, non-toxic, self-replicating biocatalyst, low temperature systems
 - 200 MW of electrolysis per typical ethanol plant could recycle all of the CO₂ emissions into CH₄

700 Liter Vertical Stirred Biomethanation reactor at NREL

200 Ethanol Plants in the U.S. -- Each plant produces an average of 50 M gallons/y and 150,000 metric tons of CO₂

LLNL, Stanford SCG Microbial Electromethanogenesis


- It was recently discovered that certain microbes are capable of directly converting electrical current, water and carbon dioxide into methane, a process known as microbial electromethanogenesis, or ME.
- This process enables single-unit conversion of CO2 and electricity to methane, a much simpler process than the current approach.
- ME is <u>important</u> because it offers the potential to reduce CAPEX and OPEX costs associated with biogas upgrading.
- Rule of Thumb: 10MWe feeding a biomethanation reactor can recycle 7500 tons of CO2 per year

Keys to Success

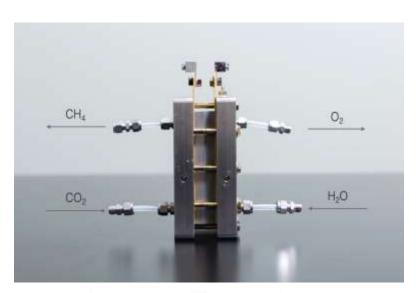
- Well grounded science & engineering
- Strong team
- Commercialization partners in place
- TRL: 5; Years to commercial pilot: 6

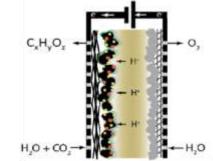
IN-SITU MICROBIAL ELECTROMETHANOGENESIS

By producing hydrogen in the same reactor where the microbes utilize it to convert CO_2 into CH_4 , we can overcome productivity limitations associated with poor solubility and mass transfer of hydrogen in water. By eliminating the need for a separate electrolyzer, the process can be made modular and the scale can be tuned to the size of the biogas source.

Advanced Manufacturing of Electrodes

We can manufacture high surface area electrodes in any geometry for various applications. Cylindrical electrodes are electroplated with a NiMo catalyst for performing hydrogen evolution at neutral pH in a tubular bubble column flow reactor.



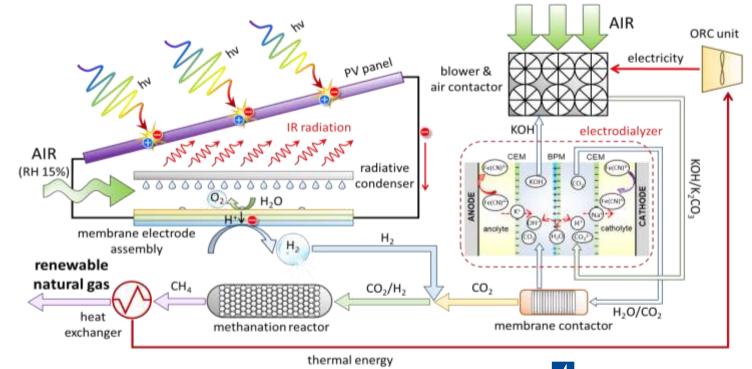


35

Opus 12, SCG, DOE Electrochemcial CO2 Reduction & Conversion System

- Opus 12 is developing an efficient polymerelectrolyte membrane (PEM) CO₂ electrolyzer that can couple to sources of renewable electricity and recycle carbon dioxide emissions into useful chemicals and fuels.
- Numbering-up to future CO₂ conversion plant, 10-100 modules would be capable 50 tons per day of total CO₂ conversion at Opus 12's current electrode performance, and over three times this amount at future performance targets.
- This technology is <u>important</u> because it has the potential to significantly improve the energy efficiency of CO₂ utilization and sequestration while reducing process costs.

Opus 12 Electromethanogenesis – metal nanoparticle catalyst/polymer membrane



Caltech, JCAP SCG Electrochemical **Extraction and Conversion of** CO_2 from Seawater

We have envisioned:

- A floating CH₄ farm powered by PV
- Direct CO₂ capture from oceanwater
- Modular Sabatier reactor

- CO₂ in the atmosphere is in constant equilibrium with the ocean.
- World's ocean represents a natural carbon sink that absorbs 25% of CO₂ entering the atmosphere.
- The effective <u>concentration of CO₂ in seawater is a factor of 128 times larger than in the air</u>.
- Direct coupling of electrochemical CO₂ extraction and conversion to nongaseous chemicals by using a bipolar membrane electrodialysis (BPMED) cell and a vapor-fed CO₂ reduction cell is an <u>important</u> <u>advancement</u>:
 - <u>Record low electrochemical energy consumption</u> of 0.98 kWh kg-1 CO₂ or 155.4 kJ mol-1 CO₂ from seawater
 - <u>Record high CO₂ extraction efficiency of 71%</u>
 - <u>Highly selective conversion of CO₂ >80% into fuels and chemicals in the vapor-fed device</u>

Bench-scale (10 cf³/day), sunlight driven, CH₄ generator

					-						
		- H									
		1 132 110	Sint 1		-			20		1978	FI
							internal la				
			a lease la		and shows	0.5					
									Lin		B .
			15.0		diam.			-			
			54	-				tere la			
						-	2.		P • • 1		2.4
			-	1 1 13	Real Property lies	1. 1		99.			
	and the second s		+ 4	36	-	Trail in	11		1.1		
All and the second s	Samour and the sur-			1000	11.54	1 man				100	-
	And the second second					100					9T
	Er 14					H				100	
		DEC .			and the second second						
	1 RE 10 10 10 10		15	-							
				. 7 8	and the second states						
- 新闻学 - 新聞公務部 (2) (1) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3				-					8 II 8		
·····································	ann maran 🕅		131 15	ALC: NOT						-	яł.
				R	. A		21	4		k	
		112			1.864	RIN()	100				
				-		R LINH			E.		81
		10101 11		1	12.1		062	1 4			¥.
TRANSFER REPAIRS TO A REPAIR OF A DATE OF		1 V		11	-					man	
					-				1		
					-					H-	
			<u>8</u>		. 44 181		N.		1	-	
					Real Property	Calle .	-	-	-41		
		L LLL I	81			mere	创作	199		ii 👘	1
			La el s		122 123	H LI LAT	ije-	1	18		
		12/10 10	E-0			100	-	1			
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Rin Munder and				and the second						
a fire and the state of the state of the					i de la composition			8			
						16			A (1)		
PELAL PELAL PRESIDENCE PERMIT			a Anti					-	<u>e</u> .		
THE REAL REAL PROPERTY AND INCOME.	888		6	00. 1	LOUGH DOWN	1000 1000	100.0	100	1. 9 11	100	

THANKS!

Follow-up Questions: Ron Kent rkent@socalgas.com 213 448-3465

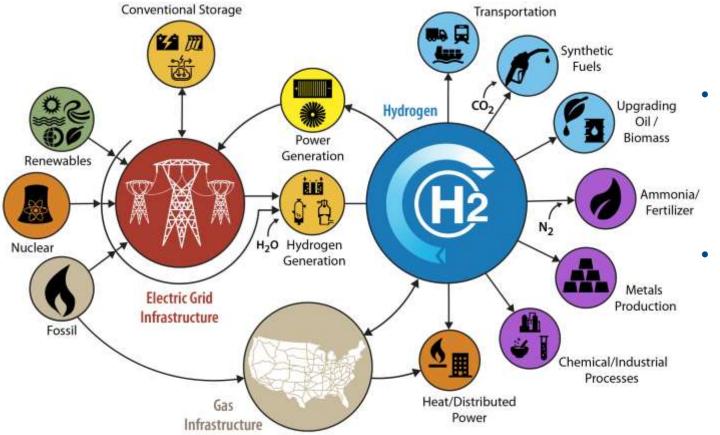
SAND2020-12130 PE

Hydrogen in Natural Gas Infrastructure: Materials Compatibility

Chris San Marchi, Sandia National Laboratories Joe Ronevich, Sandia National Laboratories Kevin Simmons, Pacific Northwest National Laboratory

NARUC Annual Meeting November 5, 2020

Supported by DOE's Hydrogen and Fuel Cell Technologies Office (HFTO) in the Office of Energy Efficiency and Renewable Energy (EERE)


Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525

Why hydrogen in natural gas infrastructure?

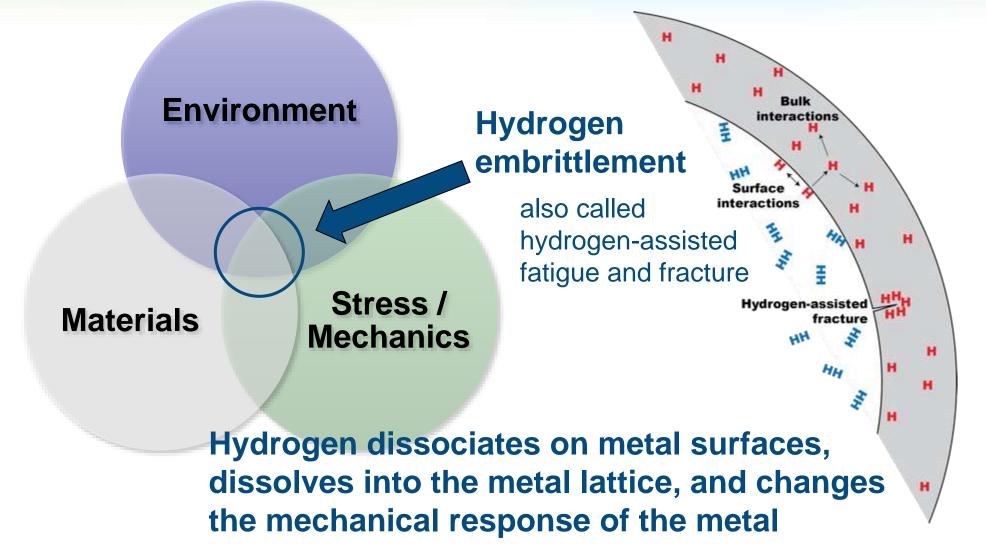
Hydrogen is a convenient energy carrier for the storage and conveyance of energy to serve a range of industrial and transportation applications

Hydrogen is already used extensively in industry – about 10 MT annually

 Large quantities are distributed in pipelines in the US

However, gaseous hydrogen is known to embrittle most metals

- What is hydrogen embrittlement and when is it important?
- How does gaseous hydrogen affect fatigue and fracture of pipeline steels?
- Is there a threshold below which hydrogen effects can be ignored?
- Can the effects of hydrogen be masked by other physics?
- Where are the gaps in understanding structural integrity of hydrogen pipelines and piping?
- What is the implication of hydrogen on life of pipelines and piping?



- What is hydrogen embrittlement and when is it important?
- How does gaseous hydrogen affect fatigue and fracture of pipeline steels?
- Is there a threshold below which hydrogen effects can be ignored?
- Can the effects of hydrogen be masked by other physics?
- Where are the gaps in understanding structural integrity of hydrogen pipelines and piping?
- What is the implication of hydrogen on life of pipelines and piping?

Hydrogen embrittlement occurs in metals under the influence of stress in hydrogen environments

Hydrogen-induced damage also occurs in polymer materials

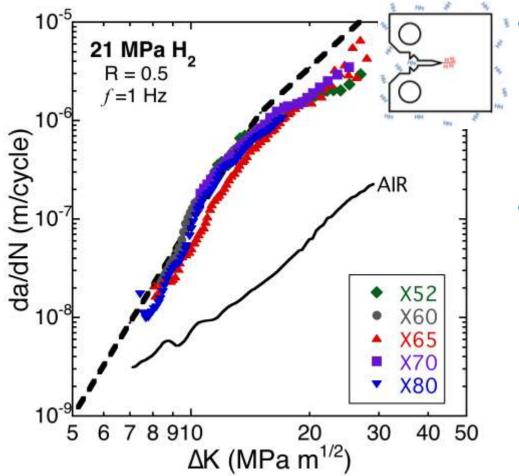
- Polymers are used extensively in hydrogen infrastructure
 - Low-pressure piping and pipelines
 - Liners of composite structures
 - Seals

67

- Potting and other pressure boundaries (e.g., feed-thrus)

Examples of damage in elastomers

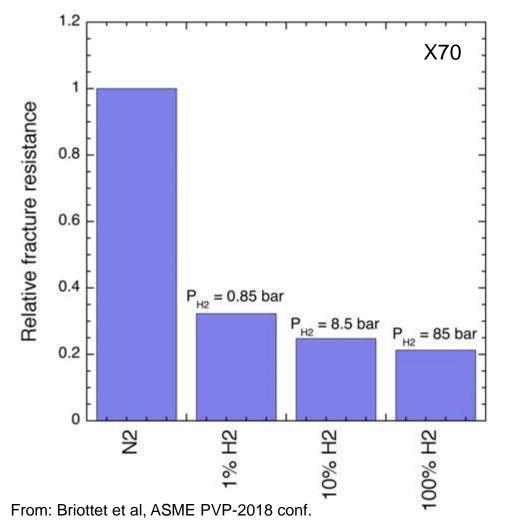
<u>Thermoplastics</u> HDPE, Nylon, PEEK, PEKK, PET, PEI, PVDF, Teflon, PCTFE, POM Elastomers EPDM, NBR/HNBR Silicone, Viton, Neoprene, polyurethanes Thermosetting polymers Epoxy, PI, Polyurethane



- What is hydrogen embrittlement and when is it important?
- How does gaseous hydrogen affect fatigue and fracture of pipeline steels?
- Is there a threshold below which hydrogen effects can be ignored?
- Can the effects of hydrogen be masked by other physics?
- Where are the gaps in understanding structural integrity of hydrogen pipelines and piping?
- What is the implication of hydrogen on life of pipelines and piping?

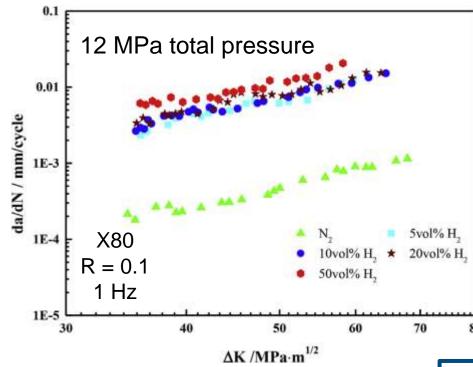
Pipeline steels tend to show very similar fatigue crack growth rates in gaseous hydrogen

- A wide variety of pipeline steels display similar fatigue response in high-pressure gaseous hydrogen
- Fatigue crack growth rates in hydrogen scale approximately with square root of pressure (not shown)
 - Upper 'plateau' is independent of pressure



- What is hydrogen embrittlement and when is it important?
- How does gaseous hydrogen affect fatigue and fracture of pipeline steels?
- Is there a threshold below which hydrogen effects can be ignored?
- Can the effects of hydrogen be masked by other physics?
- Where are the gaps in understanding structural integrity of hydrogen pipelines and piping?
- What is the implication of hydrogen on life of pipelines and piping?

Low pressure hydrogen has substantial effect on fracture resistance of pipeline steels


- Measurements of fracture resistance in gaseous mixtures of H₂ and N₂ show substantial effects of H₂
- 1% H₂ is only modestly different than 100% H₂

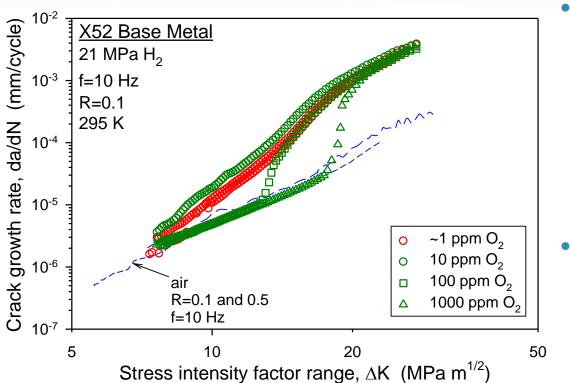
<1 bar of H₂ reduces fracture resistance

Low pressure hydrogen has substantial effect on fatigue crack growth of pipeline steels

From: Meng et al, *IJ Hydrogen Energy* **42** (2017) 7404.

- Measurements in gaseous mixtures of H₂ and N₂ show acceleration of fatigue crack growth rate with 5% H₂
 - But little additional acceleration with higher H₂ content

Small amounts of hydrogen can have substantial effect on fatigue and fracture



- What is hydrogen embrittlement and when is it important?
- How does gaseous hydrogen affect fatigue and fracture of pipeline steels?
- Is there a threshold below which hydrogen effects can be ignored?
- Can the effects of hydrogen be masked by other physics?
- Where are the gaps in understanding structural integrity of hydrogen pipelines and piping?
- What is the implication of hydrogen on life of pipelines and piping?

Impurities can influence measurements, but can also provide pathways to mitigate the effects of hydrogen

- Passivating chemical species can mitigate H₂-accelerated fatigue crack growth rates at low ∆K
- Attributed to diffusion to new crack surfaces

From: Somerday et al, *Acta Mater* **61** (2013) 6153.

Impurity content in H₂ can have substantial effect on both measurements and in-service performance

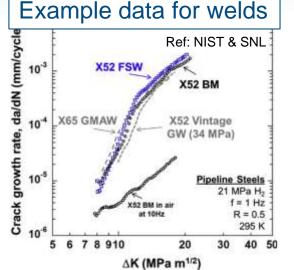
Note: These oxygen contents are well below the flammability limit.

The role of mixed hydrogen gas environments and impurities should be considered carefully

- Small partial pressure of gaseous H₂ can have substantial effect on fracture and fatigue of steels
- Oxygen can mitigate effects of H₂ in ferritic steels
 - Sensitive to mechanical and environmental variables
 - Other passivating species can have similar effects
- Structural integrity of pipelines carrying mixed gases will depend sensitively on the details
 - NG has many impurities, which can mitigate H₂ effects
 - Pure methane is inert and even small additions of H₂ can be significant

Materials compatibility for hydrogen containment structures depends on the application and the design

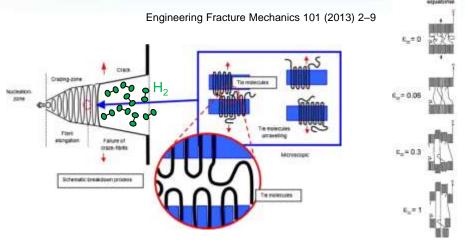
- What is hydrogen embrittlement and when is it important?
- How does gaseous hydrogen affect fatigue and fracture of pipeline steels?
- Is there a threshold below which hydrogen effects can be ignored?
- Can the effects of hydrogen be masked by other physics?
- Where are the gaps in understanding structural integrity of hydrogen pipelines and piping?
- What is the implication of hydrogen on life of pipelines and piping?

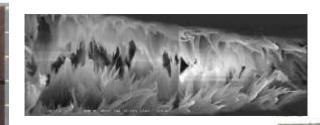


Materials data suggest no 'showstoppers' to integration of hydrogen in existing infrastructure

- Transmission pipelines
 - <u>API steel grades</u> (including welds): wealth of data exists for fatigue & fracture properties measured in gaseous H₂
- Distribution piping and components
 - Includes a diverse range of materials, many of which have not been evaluated

- Pressure and resulting stresses are generally low, suggesting cautious optimism (PE also used in FCEV fuel tanks)
- Blended gas environments
 - Role of gas impurities is not well understood, especially in dynamic environment (may not need to consider blended gas environments if systems are designed for pure hydrogen)




Evaluation of hydrogen-assisted fracture of PE pipe may require innovative test configurations...

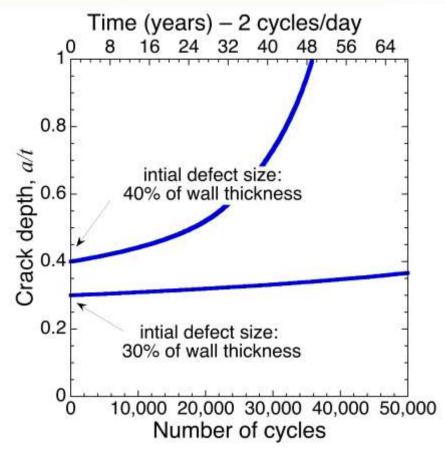
Testing methods for environmental-assisted fracture:

- Slow crack growth (SCG)
- Creep crack growth
- Fatigue resistance
- Effects of weld microstructure

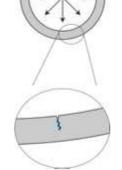
... which address characteristic fracture phenomena and unique damage associated with H_2 and H_2 -pressure cycling

Solid State NMR of H₂ pressurecycled HDPE

A. Chudnovsky et al. / International Journal of Engineering Science 59 (2012) 108–139



- What is hydrogen embrittlement and when is it important?
- How does gaseous hydrogen affect fatigue and fracture of pipeline steels?
- Is there a threshold below which hydrogen effects can be ignored?
- Can the effects of hydrogen be masked by other physics?
- Where are the gaps in understanding structural integrity of hydrogen pipelines and piping?
- What is the implication of hydrogen on life of pipelines and piping?

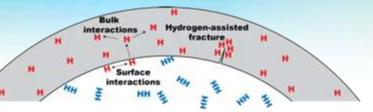


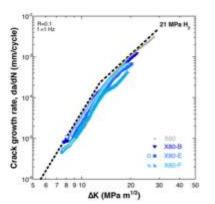
Example of predicted lifetime of steel pipeline with growing fatigue crack in H₂

Assuming

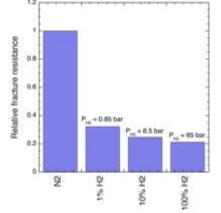
- OD = 762 mm, t = 15.9 mm
- Pressure cycles between 4 and 7 MPa
- Constant crack shape (a/2c)
- Large initial defects

- Fatigue crack growth rates in pure H₂ (at higher pressure)
- 10,000s of cycles are needed to extend the crack
- At 2 cycles per day, decades are needed to advance the crack


Available data is insufficient for similar assessment of PE pipe

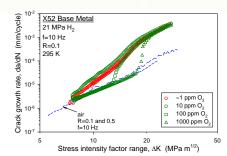


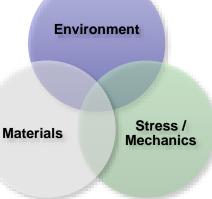
Summary

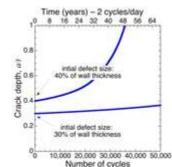

 What is hydrogen embrittlement and when is it important?

- Hydrogen degrades mechanical properties of most materials
- Hydrogen gas interactions in polymers are not well understood chemically or physically

- How does gaseous hydrogen affect fatigue and fracture of pipeline steels?
 - Fatigue is accelerated by >10x and fracture resistance is reduced by >50%
- Is there a threshold below which hydrogen effects can be ignored?
 - NO, even small amounts of hydrogen have large effects






Summary

Can the effects of hydrogen be masked by other physics?

- Oxygen and other passivating chemical species can mitigate the effects of hydrogen in some cases, which perhaps can be exploited
- Where are the gaps in understanding structural integrity of hydrogen pipelines and piping?
 - Materials on the distribution side have not been thoroughly evaluated – but operate at low pressure and low stress

- What is the implication of hydrogen on life of pipelines and piping?
 - In most cases, hydrogen does not threaten the structural integrity of pipelines and piping

Thank you for your attention

Contacts:

- Chris San Marchi <u>cws</u>
- Joe Ronevich
- Kevin Simmons

<u>cwsanma@sandia.gov</u> jaronev@sandia.gov kl.simmons@pnnl.gov

Additional resources:

- Technical Reference for Hydrogen Compatibility of Materials: <u>https://www.sandia.gov/matlsTechRef/</u>
- Hydrogen-Materials Database: https://granta-mi.sandia.gov
- H-Mat: <u>https://h-mat.org</u> (coming soon)
- Center for Hydrogen Safety: <u>https://h2tools.org/</u>
- H2@Scale concept: https://www.energy.gov/eere/fuelcells/h2scale

Supported by DOE's Hydrogen and Fuel Cell Technologies Office (HFTO) in the Office of Energy Efficiency and Renewable Energy (EERE)

Thank you for attending

Interested in more hydrogen talk?

Tune into "Electrification, Hydrogen and the Role of Gas" Wednesday, 11/11 2:15 – 3:00 pm ET