Distribution Planning Criteria

Patrick Dalton, ICF
Thomas Mimnagh, ICF
Steve Olea, Arizona Corporation Commission

25 September 2019
Today’s Speakers

Patrick Dalton is a Manager in ICF’s Energy Markets team. He has 11 years of distribution engineering experience at a major U.S. electric and natural gas utility with roles related to planning and operations, including integrating DER across the utility's service territory in eight states. (patrick.dalton@icf.com)

Tom Mimnagh is a Senior DER Project Advisor in ICF’s Energy Markets team. In this role he is responsible for supporting client objectives as the industry plans for increases in DER technologies. Tom has 33 years of experience in the Utility industry, the last five of which involved supporting Utility interface with New York’s REV proceeding. (thomas.mimnagh@icf.com)
Overview

Planning Process
- Cyclical process focuses on assuring adequate electric capacity
- Planning for emergency or maintenance needs contributes to reliability and safety

Planning Objectives
- Overarching operational objectives are embedded within the planning process and translate into criteria

Planning Criteria
- Planning criteria translates objectives into quantitative thresholds and conditions

Distribution Budget
- Capital budget illustrates result of capacity and asset planning processes
- Some distribution spending is unrelated to planning criteria
Distribution Planning Process

- **Cyclical Annual Process**
 - Incremental needs

- **Asset Management**

- **Design and Construction**
 - Distribution Projects: 1-2 years
 - Substation projects: 3-5 years

Steps Affected by Planning Criteria
Distribution Planning Objectives

Safety
Reliability
Cost
State Policy

Average U.S. customer hours interrupted (SAIDI)
total duration (hours)

Source: EIA
https://www.eia.gov/todayinenergy/detail.php?id=37652
Translating Objectives into Criteria

Objectives: Goals for desirable system characteristics or attributes

Criteria: Principles or standards by which system risks or solutions may be evaluated or prioritized

Planning Criteria
Distribution Planning Criteria

- Electric Capacity
 - Normal
 - Contingency
- Voltage
- Reliability

Illustration of Voltage Criteria

Planning for Electric Capacity

Normal Operations

“Radial” System

Transformer 1

- Feeder A
- Feeder B

Transformer 2

- Feeder C
- Feeder D

Residential (~500 – 1,500 customers)

Commercial and Industrial

DER is analyzed for system normal configuration

Credit: Ameren
https://www2.ameren.com/common/DistributionSystem.aspx
Planning for Capacity
System Flexibility

Feeders broken into three sections by switches

Each section carries 25% of feeder capacity

Feeder is loaded to 75% of capacity at full loading to be capable of carrying section of adjacent feeder

Credit: Ameren
https://www2.ameren.com/common/DistributionSystem.aspx
Planning for Capacity
Contingency Operations

Blue Substation
Transformer 1
Feeder A
Feeder B
Transformer 2
Feeder C
Feeder D

Feeder A
Section 1
Section 2
Section 3

Red Substation
Transformer 1
Feeder W
Feeder X
Feeder Y
Feeder Z
Transformer 2

Feeders would be also be segmented into three sections like Feeder A

DER may not be studied for abnormal or contingency configurations
Contingency Capacity Criteria

Example: Substation Transformer Outage

Substation is operating under single contingency or “N-1”
Feeders picking up sections are now fully loaded

Each feeder was previously at 75% and a 25% section of Feeder A was added
State policy goals driving changes to distribution planning criteria

- Regulatory Drivers
 - More Data and Better Tools
 - More DER
 - Solar PV, wind, energy storage, energy efficiency, demand response
 - Aging Infrastructure
 - Energy Conservation
 - Safety, Resilience and Reliability
 - Need for Greater Grid Flexibility
 - Non-Wire Alternatives
Evolving Objectives and Criteria

Traditional Planning Considerations

Objectives:
- Safety
- Reliability
- Cost
- Policy

Criteria:
- Electric Capacity
- Voltage
- Reliability

Emerging Needs

- System Efficiency
- DER Integration
- Resilience
- Security
- Flexibility

?
Capacity Planning

Process to plan for adequate system capacity under normal and contingency operations

- **Capacity Planning** is typically an annual process to address load growth or movement of load around the system
- System analyzed for normal and contingency conditions
- Solutions identified and proposed to address constraints

Asset Health

Programs to plan the replacement of aging assets

- **Asset health** programs contribute to system reliability and the customer experience
- Different approaches to asset health
 - Corrective Maintenance – replacing failed assets
 - Preventative Maintenance – replacing assets prior to failure
 - Reliability-Centered Maintenance – replace assets based on historic reliability records
 - Condition-based Predictive Maintenance – proactive and situational based
Distribution Budget

Two Main Components:
• Capacity Planning
• Asset Health
Distribution Budget for Capacity

- Traditional Planning Criteria Targets *Electric Capacity* which drives Capital Investment

- Spending Indirectly Affected by Planning Criteria
 - Asset Health
 - Reliability

- Some Budget Aspects Not Related to Criteria

ILLUSTRATIVE DISTRIBUTION BUDGET

- Cost

- Fleet and Equipment
- New Service
- Reliability
- Mandates
- Other
- Asset Health
- Electric Capacity

ICF proprietary and confidential. Do not copy, distribute, or disclose.

17
Distribution Planning is a key component of the utility budget and many aspects are influenced by discretionary and non-discretionary investments and costs. These are evident through both Capital and Operations & Maintenance budgets.

- Emergency, 18%
- Replacement, 22%
- Risk Reduction, 18%
- Municipal Works (Interference), 5%
- Resiliency, 7%
- System Expansion, 9%
- New Business, 13%
- Information Technology, 3%
- Grid Technology, 5%
- Cost
Utility Investments - O&M

- Elements of discretionary and non-discretionary investments and costs
- Much of the required programs in support of these categories are often mandates in rate cases, driven by the need to maintain safety, reliability, and resilience.
Cost-Effectiveness

- Utilities have presented various methods to document the cost effectiveness of their proposed investments in Rate Case submittals
- The U.S. DOE-DSPx Decision Guide (Volume III) outlines cost-effectiveness methods and their application by category of grid expenditure
- There are three (3) main types of methodologies used to evaluate grid expenditures

<table>
<thead>
<tr>
<th>Methodology</th>
<th>Grid Expenditure Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least-cost, best-fit</td>
<td>• Investments required to meet specifications and standards to maintain safety and reliability</td>
</tr>
</tbody>
</table>
| Benefit Cost Analysis | • Investments for energy efficiency or demand side management (DSM) programs, non-wires solutions, and/or DG tariffs
 • Other expenditures proposed to enable public policy or incremental societal benefits |
| Opt-in (no regulatory justification) | • Investments deliberately paid by customers to integrate their distributed resource |
Q&A – 15 min
Thank you!

patrick.dalton@icf.com
thomas.mimnagh@icf.com