Celebrating 40 Years

Updating State Interconnection Rules for Technical and Process Advancements

Tom Stanton
Principal Researcher, Energy and Environment

NRRI Colloquium
NARUC Winter Committee Meetings
Washington, DC – February 11, 2017
Outline of Presentation

1. How might new technical capabilities affect interconnection standards?
2. How might state rules and procedures be adjusted to reflect new technical standards?
3. How are today’s best-practices currently addressing those changes?
4. What are possible future updates to state interconnection rules and procedures?

Research paper, co-authored by NREL Senior Engineer Michael Coddington, forthcoming March 2017
Recent state legislation

- California 2016 AB2861 – DG dispute resolution procedures
- Iowa 2015 HF 548 – requires disconnect devices for certain DG
- Maryland 2015 HB353 – new interconnection agreement
- Maryland 2016 HB440/SB811 – solar generator interconnections
- South Carolina 2014 S1189 – new DG program, includes direction for Commission to promulgate interconnection standards for DG 2MW or less.
Recently closed interconnection dockets

- California [R1109011](#). June 2016, PSC approved rule changes.
- Iowa [RMU-2016-0003](#). December 2016, the IUB adopted amendments intended to make the rules more readable, transparent, and streamlined.
- New York [15-E-0557](#). March 2016, new rules provide “improvements [that] will foster more efficient and productive interconnection application submittal, review, and approval processes.”
- Pennsylvania [L-2014-2404361](#).
- Texas [45078](#).
Open state interconnection dockets

- Arizona **RE-00000A-07-0609**. ACC Staff-proposed rules are pending.
- Maine **2016-00268**. Parties’ comments on proposed amendments were filed 25 January 2017.
- Minnesota **16-521**. January 2017 Order establishes a work group process for updating existing rules, based on FERC SGIP and SGIA, and technical standards based on newly revised national standards and other issues needing updating.
- Nevada **16-01013**. Interconnection is an issue in this proceeding about energy storage, which includes an interconnection stakeholder group and a filed “Interconnection Issues List.”
Typical interconnection process

“[S]tandards activities should be perceived as developing, living documents that will advance in time and in stages... Much additional work still remain[s] before all major technical and administrative issues [are] resolved.”


“Federal and state regulators are faced with the challenge of keeping interconnection procedures updated against a backdrop of evolving technology, new codes and standards, and considerably transformed market conditions.”

Is there a problem? (2)

<table>
<thead>
<tr>
<th>State</th>
<th>Residential (up to 10 kW)</th>
<th>Small Commercial (10–50 kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time Req. (business days)</td>
<td>Time Req. (business days)</td>
</tr>
<tr>
<td>CA</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>NY</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>NJ</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>CO</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>AZ</td>
<td>[20]*</td>
<td>[20]*</td>
</tr>
</tbody>
</table>

* 20-day threshold is assumed for analytic purposes, because Arizona has no interconnection timeframe requirements.

Typical utility review process

DER must meet IEEE 1547, UL1741

Start

Complete Application → Fast-Track Screens → Supplemental Review Screens → Impact Studies → Model → Mitigate

Fail → Fail

Expedited Review Process (Preferred)

$ Supplemental Study Process (Better)

Approval

$$$ Detailed Study Process (Slower, Expensive, Time-Consuming)

Install PV

Permission to operate

Takeaway: Improved IEEE 1547 Standard should allow more DER through the preferred path, with improved fast-track screens


February 2017

© NRRI and T. Stanton
The goal: “to make inverters integrated grid assets that are interoperable,” and ensure DG will be “good grid citizens”

Advanced Inverters (a.k.a. “Smart Inverters”) can “respond automatically and autonomously and respond to direct communications signals from grid operators” to:

- physically connect to or disconnect from the utility grid;
- adjust generation level, power factor, reactive power;
- set parameters for frequency and voltage ride-through; and,
- maintain and communicate events log & operating history

New utility capabilities

- Fast, reliable distribution system modeling including all major DER resources
- Easily accessible maps showing substation and feeder “hosting capacity,” to help focus attention on low-cost, good, better, and best locations for installing DG
- More and better mitigation techniques are enabling more DG on existing circuits
IEEE 1547 Standards Revisions are Coming

- Entire standard is open for revisions
- Already-identified topics include:
  - Voltage ride-through & frequency ride-through capabilities and variable settings for grid support, including Volt/VAR, Volt/Watt, frequency/Watt, etc.
  - Revised Power Quality settings and requirements
  - Intentional Island and Unintentional Island provisions
  - Secondary Network Interconnection Guidelines
  - Energy Storage systems
  - Grid Support functions and Interoperability
Additional IEEE 2030 Series of Smart Grid Interoperability Standards

- P2030.1—guide for electric transportation systems
- 2030.2-2015 (approved)—guide for interoperability of electric storage systems
- 2030.3-2016 (approved)—applications for electric storage, including testing procedures for safety and reliability
- P2030.4—guide for electric power systems control and automation installations
- 2030.5-2013 (approved)—communications between the smart grid and consumers
- 2030.6-2016 (approved)—guide for monitoring the effects and evaluating benefits of demand-response programs
- P2030.7—specifications for microgrid controllers
- P2030.8—standards for testing microgrid controllers
Best-practices to date

- Uniform state rules & procedures for all utilities
- Online & electronic interconnection applications
- Overall streamlined, transparent processes with open communication between utility & developers
- Simple, reliable project and application status tracking
- Rapid, robust grid-impact studies approaches, using sophisticated distribution system software modeling
- Supplemental screening options, optionally employing multiple low-cost problem-mitigation strategies, using a “safety valve” approach for simpler problems, thus avoiding more expensive impact studies
- “Solar-ready communities” actions to reduce soft-costs
Possible adjustments to state rules

- Implement greater transparency and state-wide consistency
- Incorporate autonomous and controllable advanced (smart) inverter functions for grid support
- Focus on how utilities plan their distribution system to support higher DG levels: require substation/feeder hosting capacity reports and maps?
- Tighten time frames for utility procedures, to accommodate improved modeling capabilities. Prepare for what happens if deadlines are missed too often.

Supplementary regulatory approaches

- Revise rates to reward all kinds of DER capabilities that produce and deliver system benefits, through multiple revenue streams if necessary
- Encouraging utilities to fully integrate distributed resources into their planning processes, including electric/water/stormwater/wastewater utilities.