Staff Subcommittee on Gas

Sunday, February 9, 2020
About the Factbook: The sub-sections within each sector

Deployment: captures how much activity is happening in the sector, typically in terms of new build or supply and demand.

Finance: captures the amount of investment entering the sector.

Economics: captures the costs of implementing projects or adopting technologies in the sector.

Economics: Global wind turbine price index by signing date

- Since 2009, global turbine prices have fallen 58% to $0.70 million/MW. In 2019, turbine makers reported greater price stabilization on a per-turbine basis.
- The price for U.S. wind turbine contracts signed in 2019 tracked with global average price, at $0.90/MW. Historically, North America prices have tended to fall below the global average. However, tariffs imposed in the U.S. China trade war (since removed) this discount. The tariffs, which hit geosynchronous, blade, and torsion shafts, were estimated to increase prices by 5-10%.
- Despite tariff uncertainties, contract prices for turbines signed in 2019 dropped by about 13% from 2018 levels. As turbines get taller, capacity factors improve, which contributes to lower levelized costs for U.S. wind as well.

- Even as prices per turbine stabilize, the capacity of individual turbines is increasing, meaning that prices per megawatt will continue to drop.

Deployment: U.S. natural gas residential customers vs. consumption

Residential demand vs. consumption

- Residential natural gas consumption decreased by 2% in 2019 even as the number of customers grew by 1%. The customer base for residential gas has expanded by 5 million, or 8%, in the last decade – and by 12.1 million, or 21%, over the past 20 years. Meanwhile, residential consumption remained largely flat over the same time, rising 7% in 10 years, but only 8% in 20 years, due to efficiency gains in the use of gas.

- Residential gas consumption is volatile year-to-year as it's driven by weather patterns. Consumption dropped during the abnormally mild winter of 2012, which saw a 13% fall in the number of heating degree days from the previous winter. It then jumped during the polar vortices of 2013 and 2014. Year-on-year, 2019 will see a 1% rise in demand, partly due to atypically cold weather holding for the second year in a row.

Source: BloombergNEF, EIA Notes: Values for 2019 are projected, accounting for seasonality, based on latest monthly values from EIA (data available through October 2019). Heating degree-day data is available through September 2019.
Deployment: U.S. midstream infrastructure capacity and investment

U.S. transmission pipeline capacity additions

- Completion delays at the end of 2018 resulted in a lower-than-expected total capacity additions in 2019. Growth in the lower 48 states pipeline network slowed in 2019. Only two new pipelines came online: Kinder Morgan’s 2Bcf/d Gulf Coast Express, which carries gas from the Permian to south Texas, and Enbridge’s 2.6Bcf/d Valley Crossing, which feeds into an export route to Mexico.

- Midstream expenditures kept rising in 2018, reflecting the strongest level of capacity additions since 2008. Total expenditure grew by 24% in 2018, after 25% growth in 2017. However, midstream investment appetite has begun to dry up with the 2018 MLP tax reforms and unfavorable market conditions for producers.

Source: BloombergNEF, American Gas Association, EIA. Notes: EIA data include both first-mile takeaway capacity and pipeline additions that do not impact takeaway capacity. 2019 transmission capacity is a BloombergNEF estimate. Expenditure values reflect figures reported to the AGA by companies across the supply chain, including transmission companies, investor-owned local distribution companies, and municipal gas utilities. “General” includes miscellaneous expenditures such as construction of administrative buildings. Totals may not sum due to rounding.
Deployment: Heating demand for natural gas

Percent change in households using natural gas for heating, 2008-2018

- Natural gas is the largest heating source in the residential sector, with 63.9 million homes heated by utility natural gas or bottled propane. That is equivalent to 52% of U.S. households. The second largest heating source, electricity, accounts for 39% of households.
- In absolute terms nationwide, the total number of households using natural gas for heating has risen by 2% since 2008.
- However, changes have varied substantially by region. On a percentage basis, usage grew swiftly in the New England states as the share of consumers burning more costly home heating oil dropped by double digits in many states. However, gas usage declined in other regions of the country, where electric heating gained popularity.

Source: BloombergNEF, US Census Bureau
Deployment: U.S. natural gas demand by end use

- Total U.S. annual gas demand has grown 49% in the past decade and 5% in the last year alone to a record-setting 86.5 Bcf/d in 2019.
- Power generation gas demand grew by 1.6Bcf/d, despite a cooler summer. 12GW of coal-fired power plant retirements and lower year-on-year gas prices boosted demand.
- Industrial, residential and commercial heating demand held flat in 2019, thanks to a repeat relatively cold winter.
- LNG exports also significantly contributed to demand increase; 25MMtpa of new liquefaction capacity came online in 2019. However, this capacity had a utilization factor of less than 90%, due to technical issues at some of the newest plants.

Source: BloombergNEF, EIA. Note: Values for 2019 are projected, accounting for seasonality, based on latest monthly values from EIA (data available through October 2019).
Deployment: U.S. natural gas exports and imports

Volume of LNG exports, 2016 – Oct 2019

- Both pipeline and liquefied natural gas capacity additions contributed to increase gas exports in 2019.
- LNG exports grew by an annual average 1.6Bcf/d thanks to the commissioning of the Cameron and Freeport LNG terminals (train 1 and 2 for each), as well as the completion of train 2 at the Corpus Christi terminal in South Texas.
- South Texas is also the exit point for the newest Mexico-bound export pipeline that came online in 2019. The 2.6Bcf/d Sur-de-Texas pipeline can currently only flow 800MMcf/d because of the lack of interconnecting capacity in the Southeast Mexican market. As intra-Mexico pipeline and power plant projects get completed in 2020, exports should increase out of Sur-de-Texas and other recent capacity originating in West Texas.
- South Korea is the single largest destination of U.S. LNG exports by value, representing 20% or $1.83bn of revenues. This contributes to Asia remaining by far the largest regional market for U.S. LNG, making up 44% of total export value from the start of 2016 through October 2019.

Source: Bloomberg Terminal, EIA, Department of Energy. Notes: Data through October 2019; dollar values represent the price at export point, times the value exported.
Economics: Generating electricity from natural gas vs. coal in the U.S.

- In the U.S., power is the primary source of gas demand price elasticity. When the price of gas falls below that of coal, gas burn rises until the price differential (in $/MWh) between the two fuels closes.

- The 2019 increase in natural gas demand was due to both structural and market changes. Coal-burning capacity was reduced by 12GW in 2019, while 8.2GW of new natural gas-fired capacity was added. About 3.8GW of un-economic gas-fired generation was retired, but the impact on gas demand was minimal due to low capacity factors.

- Gas prices had to realize cheaper than equivalent coal prices during most of 2019 in to order increase demand and slow the pace of injection refills.

Source: BloombergNEF. Notes: Assumes heat rates of 7,410Btu/kWh for CCGT and 10,360Btu/kWh for coal (both are fleet-wide generation-weighted medians), variable O&M of $3.15/MWh for CCGT and $4.25/MWh for coal. Gas price used is Henry Hub. CCGT stands for a combined-cycle gas turbine. CAPP represents Appalachian coal prices.
Deployment: U.S. bioenergy and anaerobic digester build

Annual build: large-scale bioenergy

<table>
<thead>
<tr>
<th>Year</th>
<th>Waste-to-energy</th>
<th>Biogas</th>
<th>Biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>132</td>
<td>143</td>
<td>113</td>
</tr>
<tr>
<td>2009</td>
<td>132</td>
<td>250</td>
<td>53</td>
</tr>
<tr>
<td>2010</td>
<td>5</td>
<td>149</td>
<td>75</td>
</tr>
<tr>
<td>2011</td>
<td>166</td>
<td>75</td>
<td>170</td>
</tr>
<tr>
<td>2012</td>
<td>221</td>
<td>187</td>
<td>187</td>
</tr>
<tr>
<td>2013</td>
<td>555</td>
<td>85</td>
<td>109</td>
</tr>
<tr>
<td>2014</td>
<td>28</td>
<td>85</td>
<td>98</td>
</tr>
<tr>
<td>2015</td>
<td>10</td>
<td>87</td>
<td>72</td>
</tr>
<tr>
<td>2016</td>
<td>48</td>
<td>109</td>
<td>51</td>
</tr>
<tr>
<td>2017</td>
<td>32</td>
<td>109</td>
<td>8</td>
</tr>
<tr>
<td>2018</td>
<td>155</td>
<td>155</td>
<td>9</td>
</tr>
</tbody>
</table>

Annual build: farm-based anaerobic digesters

<table>
<thead>
<tr>
<th>Year</th>
<th>New projects added annually (count)</th>
<th>Cumulative operational projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>2011</td>
<td>25</td>
<td>46</td>
</tr>
<tr>
<td>2012</td>
<td>26</td>
<td>72</td>
</tr>
<tr>
<td>2013</td>
<td>9</td>
<td>81</td>
</tr>
<tr>
<td>2014</td>
<td>7</td>
<td>88</td>
</tr>
<tr>
<td>2015</td>
<td>4</td>
<td>92</td>
</tr>
<tr>
<td>2016</td>
<td>5</td>
<td>97</td>
</tr>
<tr>
<td>2017</td>
<td>11</td>
<td>108</td>
</tr>
<tr>
<td>2018</td>
<td>9</td>
<td>117</td>
</tr>
</tbody>
</table>

- In 2019, the U.S. installed 155MW of biomass and 8MW of biogas projects. Bioenergy build has tapered since 2013, when the Production and Investment Tax Credits, as well as the 1603 Treasury grant program, encouraged nearly 800MW of new installations. However, these technologies will benefit from the PTC extension that Congress approved at the end of 2019.

- Waste-to-energy technology has seen more growth in countries such as China, where 111 projects representing 1,800MW were awarded in 2019, up from 86 and 64 projects in 2017 and 2018, respectively. In all, 3,700MW of waste-to-energy projects is expected online in China 2018-2020. The U.K. also has provided important policy support to waste-to-energy. There are now 49 operational plants in the U.K., 12 under construction, 11 in advanced development and another 17 possibly on the way.

- Nine new anaerobic digesters were added in 2019 in the U.S. On average, since 2014, seven new systems have been built annually. The total count of operational projects (accounting for retirements) has increased 9% since 2014. In addition, there were nearly 775 operational landfill gas plants, 66 food scrap digester systems and 1,269 wastewater digester systems in 2019, not shown in the graphs above.

Source: BloombergNEF, EIA, company announcements, EPA, WEF Notes: Biomass includes black liquor. Biogas includes anaerobic digestion (projects 1MW and above except wastewater treatment facilities). The graph on the right reflects anaerobic digesters on livestock farms in the U.S. and is sourced entirely from the EPA AgSTAR database.

The US Biogas Market

Current
- 254 on Farm
- 1,269 Water
- 66 Food Scrap
- 645 at Landfills

Potential
- 8,300 on Farm
- 4,000 Wastewater
- 1,000 Food Scrap
- 440 at Landfills

2,200+ Operational Biogas Systems (all 50 states)

14,000+ Potential New Biogas Systems
Financing: U.S. bioenergy asset finance

Asset finance for U.S. biomass

- Asset (project) finance for new biomass and biogas build continues to fluctuate, with an resurgence of biogas investment in 2017-2019. In 2018, AcuComm and BNEF tracked 15 investments into large biomass, biogas and waste-to-energy projects with a combined capacity of over 70MW and total investment value of $643 million, around double the capacity of – and 32% the investment value of – bioenergy plants financed in 2018.

- Lower investment for biomass in the past five years suggests that new build will continue to be subdued. Plants take two to four years to build and commission, so investment functions as a leading indicator for build.

- AcuComm is an alternate data provider providing coverage of select bioenergy plants throughout the U.S.

Source: BloombergNEF, EIA, company announcements, AcuComm. Notes: Values are nominal and include estimates for deals with undisclosed values. Biogas includes anaerobic digestion (1MW and above, except for wastewater treatment facilities) and landfill gas.
Renewable natural gas (RNG) deployment: Production and use in transportation

RNG production capacity, by source

<table>
<thead>
<tr>
<th>Source: The Coalition For Renewable Natural Gas, Argonne National Laboratory (As of June 2019)</th>
</tr>
</thead>
</table>
| The vast majority of U.S. RNG is produced through biological decomposition of waste in landfills. In 2017, RNG met 43% of natural gas demand from the transportation sector, according to the EPA and EIA. In 2018 (the last year for which complete data exists), that rose to 51%.

- Key drivers of consumption have been the California Low Carbon Fuel Standard and the national Renewable Fuels Standard. Under the latter, credits known as renewable identification numbers (RINs) are critical to making RNG competitive, specifically “D3" RINs. In 2019, prices for RINs collapsed 57% from approximately $2.04/RIN in January, to $0.87 in October, according to the EPA. This drastic drop in price was triggered by small refinery exemptions granted by the EPA that diminished demand for D3 RINs.

- There were also and estimated 5.24 million gallons, 5.9 million gallons and 5-6.5 million gallons of U.S. renewable propane production in 2017, 2018 and 2019, respectively.

Source: BloombergNEF, EIA

U.S. natural gas vehicle fuel consumption

| Source: RNG: EPA – Moderated Transaction System, Fossil – EIA Natural Gas Consumption |

Copyright and disclaimer

The Bloomberg NEF ("BloombergNEF"), service/information is derived from selected public sources. Bloomberg Finance L.P. and its affiliates, in providing the service/information, believe that the information it uses comes from reliable sources, but do not guarantee the accuracy or completeness of this information, which is subject to change without notice, and nothing in this document shall be construed as such a guarantee. The statements in this service/document reflect the current judgment of the authors of the relevant articles or features, and do not necessarily reflect the opinion of Bloomberg Finance L.P., Bloomberg L.P. or any of their affiliates ("Bloomberg"). Bloomberg disclaims any liability arising from use of this document, its contents and/or this service. Nothing herein shall constitute or be construed as an offering of financial instruments or as investment advice or recommendations by Bloomberg of an investment or other strategy (e.g., whether or not to "buy", "sell", or "hold" an investment). The information available through this service is not based on consideration of a subscriber’s individual circumstances and should not be considered as information sufficient upon which to base an investment decision. You should determine on your own whether you agree with the content. This service should not be construed as tax or accounting advice or as a service designed to facilitate any subscriber’s compliance with its tax, accounting or other legal obligations. Employees involved in this service may hold positions in the companies mentioned in the services/information.

The data included in these materials are for illustrative purposes only. The BLOOMBERG TERMINAL service and Bloomberg data products (the "Services") are owned and distributed by Bloomberg Finance L.P. ("BFLP") except that Bloomberg L.P. and its subsidiaries ("BLP") distribute these products in Argentina, Australia and certain jurisdictions in the Pacific islands, Bermuda, China, India, Japan, Korea and New Zealand. BLP provides BFLP with global marketing and operational support. Certain features, functions, products and services are available only to sophisticated investors and only where permitted. BFLP, BLP and their affiliates do not guarantee the accuracy of prices or other information in the Services. Nothing in the Services shall constitute or be construed as an offering of financial instruments by BFLP, BLP or their affiliates, or as investment advice or recommendations by BFLP, BLP or their affiliates of an investment strategy or whether or not to "buy", "sell" or "hold" an investment. Information available via the Services should not be considered as information sufficient upon which to base an investment decision. The following are trademarks and service marks of BFLP, a Delaware limited partnership, or its subsidiaries: BLOOMBERG, BLOOMBERG ANYWHERE, BLOOMBERG MARKETS, BLOOMBERG NEWS, BLOOMBERG PROFESSIONAL, BLOOMBERG TERMINAL and BLOOMBERG.COM. Absence of any trademark or service mark from this list does not waive Bloomberg’s intellectual property rights in that that name, mark or logo. All rights reserved. © 2020 Bloomberg.
Staff Subcommittee on Gas

Sunday, February 9, 2020
REPAIR

Rapid Encapsulation of Pipelines Avoiding Intensive Replacement (REPAIR)

NARUC Subcommittee on Gas
February 9, 2020
Washington, D.C.

Jack Lewnard, Program Director ARPA-E
jack.lewnard@hq.doe.gov
What is ARPA-E?

The Advanced Research Projects Agency-Energy (ARPA-E) is an agency within the U.S. Department of Energy that:

- Provides **Research and Development** funding for high-risk, high-reward, transformational ideas. FY 2020 budget $366MM

- Focuses on technologies that could **fundamentally change** the way we get, use, and store energy

- Accelerates energy innovations that will create a more secure, affordable, and sustainable **American energy future**
Creating New Learning Curves, Disruptive Technologies

- Transformative Research
- Existing Technology
- Disruptive Technology

TIME OR SCALE
COST / PERFORMANCE
ARPA-E: Focused on Commercializing Technology

Since 2009 ARPA-E has provided
$2 billion in R&D funding to more than 800 projects

145 Projects have attracted more than $2.9 billion in private-sector follow-on funding

76 projects have formed new companies

131 projects have partnered with other government agencies for further development

2,489 peer-reviewed journal articles from ARPA-E projects

346 patents issued by U.S. Patent and Trademark Office

As of March 2019
What Makes an ARPA-E Project?

| IMPACT | High impact on ARPA-E mission areas
| Credible path to market
| Large commercial application |
| TRANSFORMATION | Challenges what is possible
| Disrupts existing learning curves
| Leaps beyond today’s technologies |
| BRIDGE | Translates science into breakthrough technology
| Not researched or funded elsewhere
| Catalyzes new interest and investment |
| TEAM | Comprised of best-in-class people
| Cross-disciplinary skill sets
| Translation oriented |
REPAIR Goals

- Turn-key solutions for gas utilities and pipeline owners
 - Rehabilitate cast iron and bare steel pipes > 10-inch diameter
 - 50-year life
 - $1MM/mile cost
 - Accepted by regulators as equal to pipeline replacement
 - Costs allowed in rate base
 - 3D maps
 - Visualize gas pipes and adjacent underground infrastructure
 - Integrate data from coating tool, inspection tool(s), leak reports
Commercial Alternatives to Excavate/Replace

Clamps

Wraps

Pipe Bursting

Slip-lining

Keyhole encapsulation

CISBOT
(robot)

CIPP liner

MICP
(robot + liner)
Approach

- Fabricate a new, “smart” pipe inside the old pipe
 - Leverage advances in materials, robotics, and inspection tools
 - Minimize gas service disruption
- Real-time 3D map/inspection with data visualization
- Demonstrate rehabilitated pipe is “better than new”
- Qualify rehabilitated pipe as a new assets in the utility rate base
Benefits

- Minimize excavation
 - Lower cost
 - Less disruption

- Enhance assets
 - Rehabilitated pipe is stronger, smarter than new polyethylene
 - 3-D system map with detailed inspection record including composite materials certifications

- Same technology can be adapted for other pipelines
 - Gas gathering, water, sewer, and higher-pressure transmission lines
 - $500B-$1T infrastructure replacement costs
Teamwork, Communication, and Coordination

Specifications

Testing and Technical Specification Panel Committee
Regulators and Utilities

Performance tests and modeling

Performance Metrics

System Components
- Coating materials
- Robots
- Inspection/Integrity tools
- Data visualization/management

Processes and methods

Service Companies

Commercial Offers
Diverse Expertise Needed – Including You

Testing and Technical Specification Panel
- Gas utility engineering and property management representatives (through OTD)
- PHMSA
- NAPSR
- State PUC’s
- DOE Fossil Energy
- ASTM F-17; Codes and Standards

▼ Advises ARPA-E
- Approve performance specifications, test methods, test procedures, material certification, and operator qualifications
- Position rehabilitated pipe to qualify as a new asset for utilities

▼ Working to coordinate pipeline R&D programs (OTD, PRCI, DOT, DOE, CEC)
REPAIR Tasks

Testing and Technical Specification Panel (part of REPAIR, outside FOA)

Work Categories
1. Develop and execute tests, initiate standards required for adoption
2. Develop smart composite coating
3. Demonstrate robots to create pipe in pipe
4. Develop integrity test methods and tools, and deploy on robots
5. Integrated coating deposition and integrity test on real pipe
6. 3-D maps of pipes and subsurface infrastructure

- 3 yr, $38.5 million program
REPAIR Deliverables/Advances

Work Categories

1. Testing
 - Codes and standards for techniques
 - Predictive models with latest Bayesian statistics for DIMP

2-5. Integrated coating, deposition tool, integrity inspection tools
 - Coating with 50 year life without reliance on legacy pipe
 - Stronger than steel, non-corroding, self-healing and self-reporting capability
 - In-Line Inspection tools that can be incorporated into DIMP

6. Mapping *(accelerated program)*
 - 3D maps of gas pipes and adjacent underground infrastructure
 - Real-time visualization tools for utilities, One-Call, and contractors
 - GIS-enabled database with locations, material certs, deposition conditions, inspection results to allow work planning and forecasting
Questions
Back-up
Task 1 – Testing and Analysis

Scope

- 1.1 Define failure mechanisms
 - Precedents: ASTM test standards for polyethylene and steel pipes; CIPP test protocols
 - Identify failure modes for cast iron and bare steel pipes
 - Collaborate with TTSC for consensus to validate 50 year lifespan

- 1.2 Model failure modes to identify critical physical properties and develop test methods
 - Communicate properties to coating material development teams
 - Critical properties are function of material, pressure, and legacy pipe dimensions
 - ISO 17025 practices, reviewing existing/available protocols

- 1.3 Pipe testing and failure analysis
 - Samples fabricated by system integrators from Task 5
Potential tests, based on liners

- Deflection (lateral deformation), due to undermining, frost heave, ground subsidence, possibly earthquakes (i.e., liquefaction, lateral spreading).
- Axial deformation (axial displacement), due to thermal expansion/contraction, adjacent construction activity, and possibly earthquakes (i.e., transient wave propagation, permanent deformation from lateral spreading or landsliding).
- Vibrational loads, due to overhead traffic, which may cause fatigue failure.
- Bonding/de-bonding at coating/pipe interface, due to differences in the thermal expansion of metal and coating or mechanical loads. Debonding could result in gas pockets at the composite/pipe interface, which may cause damage to the coating if the pipe is rapidly depressurized. Note that debonding may be advantageous in responding to some mechanical loads.
- Compatibility with current and future gas compositions with regard to corrosion and permeability, especially for hydrogen.
- Cross-section ovalisation – this maybe critical for low modulus coatings.
- Bends, tees, valves, and service connections - The presence of pipe fixtures and service connections may create stress concentrations and localized failures, in conjunction with the above failure mechanisms.
Comments on Testing

- Carved out as separate task
 - Requires expensive, specialized equipment. Can’t afford to have each team build their own pipe testing equipment

- Team working on Tasks 2-5 are expected to
 - conduct their own “coupon” scale testing
 - Include testing requirements in their proposals
 - Need stay within their testing request

- Budget for pipe testing will be set with Task 1 performers

- ARPA-E will coordinate access to testing

- Testing teams will have access to results from teams working on Tasks 2-5. Therefore they cannot also work on Tasks 2-5 to avoid any conflict of interest
Task 2 – Smart Coating Materials

▶ Scope
 – Develop smart coating materials consistent with:
 • Performance requirements per TTSC (i.e. 50 year life)
 • Requirements for deposition tool(s) forming coating pipes (i.e. viscosity, cure time)
 – Incorporate Smart features
 • Self healing
 • Self reporting Enhanced adhesion (as required)

Getting started
 – Physical properties defined per failure modeling and performance testing (e.g. tensile strength)

INTEGRATION REQUIRED
Task 3 – Coating Deposition Tool

Scope

- Develop coating deposition tool
- Design and test robotic crawler integrated with deposition tool:
 - Operate 500 m in each direction from pipe launch point
 - Deposit coating at 15 m/hr or greater
 - Capable of operating 10-inch diameter pipe and larger
 - Capable of operating in pipe with minimal cleaning
 - On-board diagnostics for coating deposition QA/QC
 - Preference for ability to operate with pipe on-line

INTEGRATION REQUIRED
Task 4 – Pipe Integrity/Testing Tool

Scope

4.1 Pre-coating integrity/inspection

- Identify any gross features that could hinder pipe rehabilitation (e.g. obstruction such as debris, liquids, pipe joints, tight bends, reducers, valves, etc.)
- Identify pipe defects that would limit the operation of the coating deposition tool (e.g. cracks, excessive corrosion, dents, etc.)
- Provide real-time information with data visualization for operators.

4.2 Post-coating integrity/inspection

- Above requirements in addition to testing the integrity of the newly deposited coating

INTEGRATION REQUIRED
Task 5 – Integrated Task 2,3,4 Pipe Test

- Scope
 - Commercial success requires system integrators to develop “turnkey” offerings for gas utilities
 - Responsible for selecting and integrating system components
 - Final tests will be run on a 10- to 20-inch diameter segment of field pipe removed from service
 - Applicants will demonstrate pre-coating inspection, coating deposition, and post-coating inspection to verify coating integrity
Task 6 – Pipeline Mapping/Inspection Data Integration

Scope

- **6.1 In-pipe mapping**
 - In-pipe mapping tools deployed on the coating robot and/or inspection robot preferred
 - Tools deployed independently require Applicants to provide the target operating ranges

- **6.2 Surface mapping**
 - Develop 3D sub-surface imaging tool
 - Real-time data visualization
 - Capable of identifying sub-surface infrastructure
 - Ideally capable of measuring pipe properties (i.e. materials, diameter, and wall thickness)

- **6.3 Data integration and data management/visualization**
 - Create unified data management tool to integrate all REPAIR information into 3D pipeline maps
 - Provide an interface that allows users to manage and visualize the data in real time.
Funding Opportunity Announcement (FOA)

- Expect February Release
- 60 day response time
- Straight to full applications (eliminating concept paper phase)
- Key review areas
 1. Impact of proposed technology (30%)
 2. Overall scientific and technical merit (30%)
 3. Qualifications, experience, and capabilities of the project team (30%)
 4. Soundness of management plan (10%)
Staff Subcommittee on Gas

Sunday, February 9, 2020
National Petroleum Council

Dynamic Delivery – America’s Evolving Oil and Natural Gas Transportation Infrastructure

National Association of Regulatory Utility Commissioners
Natural Gas Staff Subcommittee
February 9, 2020
National Petroleum Council (NPC)

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization</td>
<td>A Federally chartered, self-funded Advisory Committee; not an advocacy group, does not lobby</td>
</tr>
<tr>
<td>Purpose</td>
<td>Sole purpose of NPC is to advise U.S. Secretary of Energy and Executive Branch by conducting studies at their request</td>
</tr>
<tr>
<td>Origins</td>
<td>Continuation of WWII government / industry cooperation</td>
</tr>
<tr>
<td>Membership</td>
<td>Broad and balanced. Approximately 200 members from all segments of the oil and gas industries and many outside interests</td>
</tr>
<tr>
<td>Study Participants</td>
<td>Diverse interests and expertise relating to the topic being addressed</td>
</tr>
<tr>
<td>Study Reports</td>
<td>All NPC advice is provided in reports approved by its members and is available to the public. Reports can be viewed and downloaded at no cost from the NPC website – www.npc.org</td>
</tr>
</tbody>
</table>
A study that would:

- Explain the extent of the transportation infrastructure today and the United States’ infrastructure needs under varying demand assumptions.
- Include a review of any constraints to growing domestic oil and natural gas production caused by infrastructure limitations that reduce domestic demand or energy exports.
- Evaluate technology and policy options for improving infrastructure siting and related permitting processes, and which in turn could improve safety, environmental performance, and resilience of the system.

Key Questions:

- What are the important changes in future supply and demand patterns, and what transportation infrastructure improvements are required to leverage the regional and national opportunities offered by these changes?
- What advances in technology could improve the U.S. oil and natural gas transportation system, in terms of safety, reliability, efficiency, and environmental performance? In what new technology areas should research be progressed?
- How can state and federal governments leverage efforts to support U.S. petroleum and natural gas supply and transportation infrastructure capacity improvements?
- Are there regulatory requirements or policies that may be causing unintended consequences on energy system resilience? If so, what solutions can accomplish the regulatory objective more effectively?
- What emerging issues should policy makers be aware of and what actions should be considered to address these issues?
Study Team Diversity

STUDY COMMITTEE
55 team members

COORDINATING SUBCOMMITTEE
41 team members

SUPPLY AND DEMAND TASK GROUP
49 team members

INFRASTRUCTURE RESILIENCY, MAPPING AND ANALYSIS TASK GROUP
32 team members

PERMITTING, SITING, AND SOCIAL LICENSE TO OPERATE TASK GROUP
45 team members

TECHNOLOGY ADVANCES AND DEPLOYMENT TASK GROUP
126 team members

STUDY TEAM DIVERSITY
Key Finding 1: The United States has become the largest producer of both oil and natural gas in the world, which has provided the nation with increased employment and economic growth, reduced energy imports, and reduced greenhouse gas emissions. Increased natural gas use replacing coal to generate electricity has been the single largest contributor to reducing U.S. CO₂ emissions by 15% since 2005.
Supply and Demand

Even in energy forecasts designed to meet climate change targets, the largest energy sources continue to be oil and natural gas through at least 2040 to provide reliable and affordable energy.

IEA New Policies Scenario – Incorporates existing energy policies as well as an assessment of the results likely to stem from the implementation of announced policy intentions. These policies include the Nationally Determined Contributions countries agreed to under the Paris Agreement.
Key Finding 3: The benefits of the unprecedented increase in oil and natural gas production could not have come about without the significant expansion and adaptation of transportation infrastructure capacity.

Oil and Natural Gas Production Shifts

Crude Oil

Natural Gas
Natural Gas Flows Pre- and Post-Shale

Source: RBN Energy and Hart Energy
Key Finding 4: The U.S. economy can benefit even further from increased export of oil and natural gas.

Key Finding 5: Existing infrastructure has been modified and adapted to near-maximum capacity. To connect America’s abundant energy supplies with domestic and global demand, significant public and private investment in new and existing pipelines, ports, rail facilities, and inland waterways will be essential.

Key Finding 6: Several critical infrastructure bottlenecks exist: natural gas pipeline access to New England/New York, Port of Houston capacity, and oil and natural gas export capability.

Key Finding 7: It is becoming increasingly challenging to keep pace with hiring and developing a well-qualified workforce to build and maintain existing and future infrastructure. A skilled labor shortage exists in the United States and will continue to grow as the current workforce continues to retire.
Value of Oil and Natural Gas Infrastructure

Economic Contributions of Oil and Natural Gas

- **JOBS**: 10.3 MILLION
- **INCOME**: $714 BILLION
- **ECONOMIC BENEFIT**: $1.3 TRILLION

Lower Energy Costs Benefit Consumers

Value of Oil and Natural Gas Infrastructure

Natural Gas and Electricity Costs as a Percentage of Total Pre-Unconventional Oil and Natural Gas Manufacturing Costs

Improving Infrastructure Investment

The NPC recommends:

• To mitigate negative impacts on interstate commerce, all levels of government should have constructive dialogue about the overall economic benefits from the nation’s energy resources and effectively engaging stakeholders and minimizing local impacts and risks.

• Congress should fully appropriate the revenue coming into the Harbor Maintenance Trust Fund and the Inland Waterways Trust Fund funds to restore and fully maintain all U.S port and waterways infrastructure at their authorized dimensions.

• The U.S. government, states, local communities, secondary schools, and industry should promote vocational career education and technical training of their constituents, members, and communities.

• Industry, along with secondary and technical schools, should advocate for and support registered and accredited apprenticeship programs to ensure an adequate supply of skilled industrial construction, operations, and maintenance workers.
Key Finding 8: An interdependent infrastructure system of pipeline, truck, rail, and marine transport working together with storage ensures the delivery of reliable and affordable energy.

Crude Oil Supply Chain Example

![Crude Oil Supply Chain Diagram](source: Plains All American, adapted by NPC.)
Key Finding 9: Overlapping and duplicative regulatory requirements, inconsistencies across multiple federal and state agencies, and unnecessarily lengthy administrative procedures have created a complex and unpredictable permitting process.
Permitting

The NPC recommends:

• States should consider utilizing the Environmental Council of the States’ relationships with state officials and knowledge of the federal process, to facilitate a common agreement between federal and state jurisdictions when there are potential conflicts between a NEPA review and a SEPA review to avoid delay, confusion, and legal vulnerability.

• A national organization made up of state regulatory agencies, such as the Interstate Oil and Gas Compact Commission or the Environmental Council of the States, and representatives of local governments, communities, interested nongovernmental organizations (NGOs), and industry should collaborate to develop a model master structure for state permitting and coordination of approvals for infrastructure, to provide for efficient collaboration with operators and better coordination with federal agencies.

• States should adopt a single point of contact for permit coordination.
Permitting

The NPC recommends: The U.S. Army Corps of Engineers should:

- Implement rulemaking to provide procedural consistency among nationwide permit programs, potentially requiring pre-application to identify Lead Districts, points of contact, and variations in requirements across watershed and political boundaries.

- Continue working and implementing One Federal Decision process initiatives to improve the efficiencies of the USACE regulatory processes, including a lead district for projects crossing multiple districts and a single point of contact for One Federal Decision and any project crossing District boundaries.

- Clarify when the pre-construction notifications requirements for use of NWP12 are required, e.g., when there are public water supply intakes downstream of the activity, or when the activity may affect listed species or officially designated critical habitat.

- Implement consistent approaches to permit interpretation among its field offices to minimize variation of nationwide permit programs.
Permitting

Key Finding 10: Bipartisan actions by Congress and the Executive Branch, including mechanisms to expedite the permitting process for large infrastructure projects, represent positive steps; however, further improvements are necessary.

The NPC recommends:

• A federal agency should consult with FAST-41 project sponsors and other stakeholders to obtain feedback to improve FAST-41 before reauthorization.

• Congress should reauthorize FAST-41 for an additional 7 years and include the following improvements:
 – Expand FAST-41 to include eligibility for all federal energy infrastructure projects and continuing staffing of FPISC.
 – For federal permits or decisions delegated to the states (CZMA, CWA, CAA), states should be incentivized to comply with FAST-41 and One Federal Decision and make decisions in conjunction with federal NEPA process timeline.
 – FPISC should be leveraged to drive concurrent review by the states during federal permitting processes.

• Further reauthorizations by Congress of FAST-41 should consider eliminating sunset provisions.
Stakeholder Engagement

Key Finding 11: Successful infrastructure projects depend upon early, effective, and continuous stakeholder engagement and collaboration.
The NPC recommends: Infrastructure companies should:

- Implement existing best practices (e.g. FERC, INGAA, API, AOPL) for early and effective engagement with local governments, communities, private citizens, public interest groups, and American Indian and Alaska Native Tribes to understand and address stakeholder concerns. Infrastructure companies should strive to incorporate stakeholder input into a proposed action wherever practicable and collaborate on finding solutions or conveying reasons in those circumstances where an interest is difficult to accommodate.

- Engage in educational and awareness efforts with communities and stakeholders to increase understanding of the need for infrastructure, the steps to be taken to construct and operate it safely, and how they will be engaged throughout the siting and development process.

- Work collectively towards more effective engagement practices regarding energy, environmental, and related public policies that encourage responsible energy development and transport.
Key Finding 12: The nation faces the dual challenge of providing affordable energy to support economic growth and human prosperity while addressing the environmental effects including the risks of climate change. Industry shares the public’s concerns that climate change is a serious issue that must be addressed. Litigation of individual projects to address climate concerns is an ineffective approach.

The NPC recommends:

• All infrastructure companies should strive for an outstanding environmental compliance record and to reduce the intensity of greenhouse gas emissions from their operations. Emissions reduction programs, such as One Future, The Methane Challenge, The Environmental Partnership, and EPA’s Natural Gas Star Program are all means of demonstrating a company’s efforts to reduce methane emissions.
Key Finding 13: The permitting and construction of some energy infrastructure projects has been challenged, delayed, or stopped as a result of litigation by stakeholders concerned about climate change and the associated policy debate.

The NPC recommends: Congress should:

• Clarify that greenhouse gas assessments under NEPA, for oil and natural gas infrastructure projects, are confined to emissions that are (1) proximately caused by the federal action (see Dep’t. of Transportation v. Public Citizen, 541 U.S. 752 (2004)), and (2) are reasonably foreseeable.

• Enact a comprehensive national policy to reduce greenhouse gas emissions and seek to harmonize federal, state, and sectoral policies to enhance efficiency and effectiveness. Congress should ensure that the enacted national policy is economy wide, applicable to all sources of emissions, market-based, transparent, predictable, technology agnostic, and internationally competitive.
Key Finding 14: Crude oil, petroleum products, and natural gas moved by the nation’s infrastructure reach their destinations with a high degree of safety, resiliency, and environmental performance. However, incidents have occurred, and oil and gas companies are committed to continuous improvement.
Key Finding 15: Advancements in new technologies have been an important contributor to industry’s safety, reliability, and environmental performance. Overcoming challenges and barriers to new technology development and deployment would accelerate these improvements.

The NPC recommends:

- While working with DOE, EPA, and the U.S. Coast Guard, DOT should lead creation of an agile pathway for evaluation and regulatory acceptance of new technologies that can improve transportation safety and shorten the research, deployment, and adoption cycle time.
- Congress should authorize DOT to lead a collaborative effort, with support from industry, to develop and prioritize pilot programs that can accelerate pipeline, storage, and LNG technology adoption based on performance-based rules with a goal of enhancing public safety. Upon successful completion of pilot programs, regulators should promptly update regulations to allow use of new technology.
- Oil and natural gas transportation companies should establish a collaborative effort with participation from DOT, DOE, EPA, and industry research consortiums to prioritize promising, risk-based research opportunities, establish consistent technical readiness processes, and prioritize field validation testing needs.
- FERC and state regulatory agencies should work with DOT, DOE, and others to promote laws, regulations, and public-private partnerships that support cost recovery for natural gas and oil pipeline safety research.
Key Finding 16: Cyber threats to energy infrastructure control systems are increasing and security protections are being challenged due to increasing connectivity and growing malicious cyber activity.

The NPC recommends: Cybersecurity protections should be advanced through:

- Industry, in collaboration with trade associations and federal government agencies, should adopt and maintain up-to-date performance-based Cyber Security Management Standards.
- Increased DHS and DOE capabilities and resources to support independent and secure cyber security assessments and audits prioritized on critical infrastructure.
- DOE, working with industry, DOD, DHS, and DOT, to establish a collaborative process to identify and prioritize research and development aimed at sector-wide protection against nation-state and advanced persistent threat actors.
Dynamic Delivery: America’s Evolving Oil and Natural Gas Transportation Infrastructure

Full draft report available at dynamicdelivery.npc.org

For more information, email info@npc.org
Staff Subcommittee on Gas

Sunday, February 9, 2020
In 2019, Palo Alto, California adopted a ban on natural gas connections in new construction.
Residential Electrification Opportunities in Palo Alto, CA

FIGURE 21: ESTIMATED ANNUAL HOUSEHOLD GREENHOUSE GAS EMISSIONS IN CO2 EQUIVALENT (MT)

- **Diet**: 7.6 (34%)
- **Flying**: 4.7 (21%)
- **Vehicle Transport**: 5.1 (23%)
- **Natural Gas**: 3.06 (14%)
- **Recycling & Waste**: 1.8 (8%)

Bar Chart Breakdown

- **Space Heating**: 1.7 (8%)
- **Water Heating**: 1.0 (5%)
- **Clothes Drying**: 0.2 (1%)
- **Stovetop Cooking**: 0.2 (1%)
Palo Alto Electricity is 100% Carbon Neutral on Annual Basis

- Palo Alto’s electric supply resources vary both hourly and seasonally

Overgeneration must be curtailed or sold

Natural gas and imports make up short fall
Overnight Electricity Supply in California

Current supply as of 21:30

- **Renewables**: 7.4% (1,857 MW)
- **Natural gas**: 42.3% (10,649 MW)
- **Large hydro**: 10.0% (2,520 MW)
- **Imports**: 35.9% (9,045 MW)
- **Batteries (charging)**: 0.0% (-9 MW)
- **Nuclear**: 4.4% (1,115 MW)
- **Coal**: 0.1% (15 MW)
- **Other**: 0.0% (0 MW)

Current renewables as of 21:30

- **Solar**: 0.0% (0 MW)
- **Wind**: 14.2% (264 MW)
- **Geothermal**: 40.2% (747 MW)
- **Biomass**: 18.5% (343 MW)
- **Biogas**: 10.6% (197 MW)
- **Small hydro**: 16.5% (306 MW)

CAISO November 22, 2019 9:35 PM
Staff Subcommittee on Gas

Sunday, February 9, 2020
NW NATURAL OVERVIEW

- 161 year old gas utility serving, 2.5 million people through more than 750,000 meters
- Water utilities serve 46,000 people through 18,000 connections with several acquisitions pending
DELIVERS MORE ENERGY THAN ANY OTHER UTILITY IN OREGON

• Heats 74% of residential square footage in the areas we serve
• Provides 90% of energy needs for our residential space and water heat customers on the coldest winter days
• One of the tightest, newest systems in the country

Source: ODEQ In-Boundary GHG Inventory 2015

NW NATURAL SERVES 2.5 MILLION PEOPLE IN 140 COMMUNITIES
Electrification of space heating is not an effective decarbonization strategy

- Roughly 2 out of 3 Oregonians rely on natural gas for home heating, yet it’s 3% of greenhouse gas emissions.
- E3 study analyzed how to serve buildings in 2050 and showed that leveraging our system is the least costly option.
- All pathways rely on natural gas to decarbonize by 2050.
- Do we leverage the billions of dollars in pipeline infrastructure or do we build new gas peaker plants?
- We can achieve deep decarbonization by changing the product in our pipes.

Bans would be ineffective

- There is no such thing as banning natural gas, not now and not for decades to come.
- Up to 45% of natural gas use for Oregon annually is for power generation - and that’s before the coal plants close.
- Most citizens don’t want bans, they want choice and a diversified set of solutions.

We must look at energy system risks in evaluating solutions

- There is a serious capacity shortfall that’s forecasted for the Northwest electric grid – with current loads.
- Gas system is designed to serve winter; existing system already has 3x the peak capacity of electric grid.

1 E3 "Pacific Northwest Pathways to Decarbonization," http://lesswecan.com/what-were-doing/pathways2
OUR LOW-CARBON PATHWAY

VOLUNTARY GOAL: 30% CARBON SAVINGS BY 2035

<table>
<thead>
<tr>
<th>OUR PRODUCT</th>
<th>OUR CUSTOMERS</th>
<th>TRANSPORTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDUCE CARBON INTENSITY</td>
<td>REDUCE AND OFFSET CONSUMPTION</td>
<td>REPLACE MORE CARBON INTENSIVE FUELS</td>
</tr>
<tr>
<td>NW NATURAL OPERATIONS</td>
<td>ENERGY EFFICIENCY</td>
<td>COMPRESSED NATURAL GAS AND RENEWABLE NATURAL GAS SERVE TRASH TRUCKS AND RETURN-TO-BASE FLEETS</td>
</tr>
<tr>
<td>UPSTREAM METHANE REDUCTION</td>
<td>SMART ENERGY (voluntary offsets)</td>
<td></td>
</tr>
<tr>
<td>RENEWABLE NATURAL GAS</td>
<td>GAS + RENEWABLE HYBRID EQUIPMENT (solar thermal)</td>
<td></td>
</tr>
<tr>
<td>POWER TO GAS (hydrogen pathway)</td>
<td>achievable savings</td>
<td>15\leftarrow 30% low to high case</td>
</tr>
<tr>
<td></td>
<td>achievable savings</td>
<td>1\leftarrow 5% low to high case</td>
</tr>
</tbody>
</table>

Baseline: 2015 emissions associated with customer use
Closes the loop on waste – renewable fuel from organic waste streams

Substantially reduces CO₂ – used directly in appliances or in vehicles

Turns costly waste into revenue generator with resiliency benefits for cities

RENEWABLE NATURAL GAS (RNG)

ODOE STUDY POTENTIAL: 48 Bcf

Equals All Oregon Residential Gas Use

Wastewater Treatment Plants
Municipal Solid Waste
Landfills
Dairies
Wood and Agricultural Residues

Turning the problem of waste into renewable energy.
FROM WASTE TO RENEWABLES

- 110 RNG facilities operating today in the U.S. and Canada
- Nearly 100 more are in development or under construction
- We are interconnecting 3 projects onto our system in 2020
- Several more in discussions

Source: The Coalition for Renewable Natural Gas.
Excess wind, solar or hydro converted to renewable hydrogen for use in our pipeline system.

- Excess renewable energy goes through electrolysis, which splits the molecule.
- Hydrogen & carbon combine through methanization.
- Methane can be stored in pipeline for future use.

40+ projects in Europe
3 projects in North America
THANK YOU
Staff Subcommittee on Gas

Sunday, February 9, 2020