Resource Planning Best and Emerging Practices: electrification in highly decarbonized power systems

NARUC Bulk Power System Training April 11th, 2024

Juan Pablo "JP" Carvallo Research Scientist Lawrence Berkeley National Laboratory

Key emerging challenge: manage risk and uncertainty

Load forecasts

- New end uses that lack history
- Uncertain adoption and use profiles

Resource Adequacy

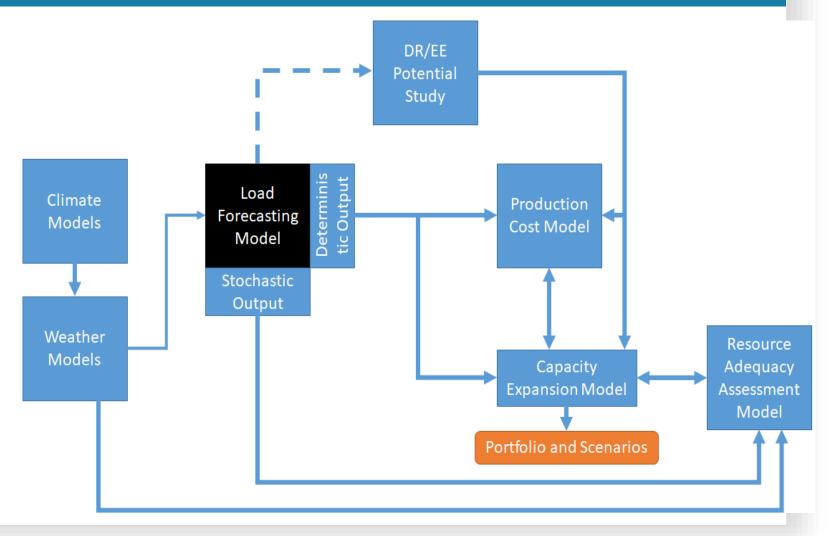
- Multiple sources of shortfalls
- Uncertain system state on any given hour

Scenarios and modeling

- Scenariobased analysis done right
- Uncertainty in model outputs

Load forecast

Traditional	Best practices	Emerging practice
Econometric or ANOVA based methods	Statistically adjusted end use (SAE) models	Separate end-use adoption and usage models with several profiles
One system-wide forecast	Zonal forecast	Granular forecast, potentially building up from bottom up distribution system forecasts
Single load forecast	High/low forecasts	Scenario-based forecasts, where each forecast follows a technical, economic, and regulatory/policy logic



Resource adequacy

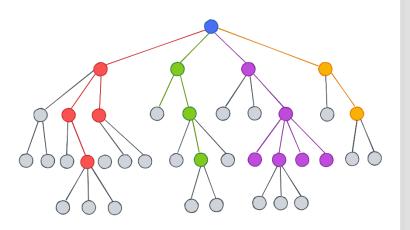
Traditional	Best practice	Emerging
Calculate planning reserve margin (PRM) based on single peak hour analysis with deterministic models	Calculate PRM based on stochastic models with 8760 hours	Iterate capacity expansion and RA models to achieve desired shortfall across multiple metrics with seasonal constructs
Capacity contribution for each technology based on historical averages	Perform effective load carrying capability (ELCC) for VRE; maintain EFORd or similar for others	Conduct an ELCC study for each resource type using stochastic modeling, including common mode failures
Achieve RA in autarky	Include firm transmission capacity with long term contracts	Simulate larger transmission footprints in RA models to ensure consistency between utility-level and regional-level RA

Modeling – Achieving consistency

- Integrated resource plans leverage multiple models that are mutually dependent
- A best practice is to make these models connections explicit, sharing the same common assumptions and ensuring input/output consistency
- An emerging practice is to make some of these interactions iterative to reflect real-world dynamics

Modeling – More recommendations!

Traditional	Best practice	Emerging
Investments decided based on legacy expansion plans	Use capacity expansion model to suggest least-cost investments	Iterate cap. exp and production cost models for higher fidelity results
Retirements are manually input with little to no support	Retirements are tested as part of scenarios	Capacity expansion model decides optimal retirements based on economic analysis
Demand side resources are nominally included based on regulatory requirements	Demand side resources are carefully included as load modifiers consistent with scenario assumptions	Demand side resources are economically selected as part of the expansion model with careful consideration of their customer benefits
 Model transmission expansion as a separate process and ignore transmission needs in IRP	Treat transmission as a resource with prescribed line deployments through scenario analysis	Co-optimize transmission deployment with resource mix for jointly optimal outcomes


Should we abandon the idea of a "preferred portfolio"?

- Not quite, but we should pay much more attention to scenario analysis and how the portfolios differ under the new much wider range of assumptions due to uncertainty
- Within these scenarios, identifying "least regrets" investments may be a way to keep prudent investments as better information becomes available.
- This is particularly important for transmission lines with long deployment times
- Scenarios should be tracked over time to guide investment, or even better reviewed and updated periodically with IRP annual updates.

Scenarios

• We have little experience and history on how electrified end uses will be deployed and used

- Challenge: improved scenario-based analysis
 - Widen the ranges for uncertainty
 - Use clear metrics to evaluate the IRP results, including well designed scorecards.
 - Integrate into IRP non-electricity decarbonization targets that drive substitution
 - Ensure scenarios from IRP are informing other regulatory proceedings and market processes

Contact and more information

Contacts

Juan Pablo Carvallo: JPCarvallo@lbl.gov Bruce Biewald: BBiewald@synapse-energy.com

For more information

Download publications from the Energy Markets & Policy: <u>https://emp.lbl.gov/publications</u> **Sign up** for our email list: <u>https://emp.lbl.gov/mailing-list</u>

Follow the Energy Markets & Policy on Twitter: @BerkeleyLabEMP

Acknowledgements

This work was funded by the U.S. Department of Energy Office of Electricity under Contract No. DE-AC02-05CH11231. We thank Joe Paladino for his support of this work. We also acknowledge the generous funding of the Energy Foundation for Synapse Energy Economics.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Resource Planning Best and Emerging Practices: electrification in highly decarbonized power systems

NARUC Bulk Power System Training April 11th, 2024

Juan Pablo "P" Carvallo Research Scientist Lawrence Berkeley National Laboratory

