A Review of the Latest Developments in ISO/RTOs Across the Country

NARUC Bulk Power System Learning Module

April 2, 2024

Zach Ming, Sr. Director

Traditional Reliability Risk

+ When all reliability risk was concentrated in peak periods, simplifications such as "availability during peak" made perfect sense

 As penetrations of renewables and energy storage resources have increased, accreditation methods have needed to evolve

The Three Broad Categories of Resource Accreditation

A Marginal Capacity Market Framework

+ Resource accreditation is based on availability during highest reliability risk hours

Energy+Environmental Economics

Capacity Requirements are *Lower* Than The Gross Peak

6

What's Happening in Capacity Right Now?

The Early Movers to Marginal ELCC

) The Budding Consensus on Marginal ELCC Approach

- + Step 1: Calculate Resource Class Marginal ELCC Values
- Step 2: Calculate Individual Resource Performance Adjustment Factors

Hour of Year	W	eather Yea	ir 1	Weather Year 2			
	Sample 1	Sample 2	Sample N	Sample 1	Sample 2	Sample N	
1	0	0	0	10	0	0	
2	0	0	0	0	0	0	
3	0	0	0	0	0	0	
4	20	0	0	0	0	0	
5	40	0	0	0	30	0	
6	10	0	0	0	10	0	
7	0	0	0	0	5	0	
8	0	0	0	0	2	0	
9	0	0	0	0	1	0	
10	0	0	0	0	0	0	
	0	0	6	0	0	0	
8758	0	0	10	0	0	0	
8759	0	0	2	0	0	0	
8760	0	0	0	0	0	0	

System Unserved Energy

Two weather years, 6 outage samples LOLE = 0.67 days/year LOLH = 2 hours/year EUE = 24.3 MWh/year

	W	eather Yea	Weather Year 2			
Hour of Year	Sample 1	Sample 2	Sample N	Sample 1	Sample 2	Samp
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	1	1	1	0	0	0
4	4	4	4	2	2	2
5	8	8	8	3	3	3
6	3	3	3	1	1	1
7	1	1	1	0	0	0
8	0	0	0	0	0	0
9	0	0	0	0	0	0
10	1	1	1	2	2	2
	5	5	5	6	6	6
8758	10	10	10	0	0	0
8759	6	6	6	6	6	6
8760	3	3	3	1	1	1

Generator Availability*

Average output during events= 3.33 MWNameplate Capacity= 10 MWCapacity Accreditation= 33%

+ Naming conventions vary by ISO

Rew York ISO

Marginal Reliability Improvement (MRI)

 Marginal Effective Load Carrying Capability (Marginal ELCC)

Direct Loss of Load (DLOL)

Energy+Environmental Economics

Next on The List

SPP filed to FERC a proposed update to capacity accreditation in March 2024 for an average ELCC for renewables/storage and average forced outage for thermal

ISONE has previously indicated it is moving toward a marginal framework

An ongoing proceeding is underway regarding capacity accreditation with developments expected in 2024

The process has been hampered by technical modeling issues as well as unique challenges geographic challenges around fuel deliverability constraints

California: Slice of Day

+ Each load-serving entity must procure sufficient capacity with each month/hour "slice"

- 12 months x 24 hours = 288 different compliance periods
- + Renewables are accredited using a percentile method "e.g. 80% worst day" that is overall calibrated to achieve 1-in-10 system reliability

+ Issues

- (Unnecessarily) complex
- Compliance is achieved based on matching one's own load as opposed to providing system value
- Compliance values almost ensure misalignment (i.e. "worst" load days almost definitionally do not occur on the "worst" solar days)

+ Benefits

 But ... value will be concentrated in the same hours as marginal ELCC (e.g. net peak hours) yielding similar economic outcomes

+ Next Steps

At the same time as the California Public Utilities Commission (CPUC) is writing detailed rules for the implementation of slice-ofday, the Commission is actively <u>exploring</u> moving beyond this framework through the implementation of marginal ELCC

Texas Performance Credit Mechanism

 Functions similarly to a marginal ELCC framework with all compensation occurring based on actual availability during tight hours (as opposed to ex-ante modeled availability)

1 year

performance credit hours

Availability during performance credit hours generates performance credits for resources Demand during performance credit hours generates performance credit obligation for loads

Imperfect a de-rational increase

+ Installed Capacity (ICAP)

- Imperfections of thermal were not recognized through a de-rating of these resources but rather through an increase in the total requirement of resources (i.e. planning reserve margin)
- Created relatively little distortion until de-rating renewables led to an apples-to-oranges contribution toward planning reserve margin

+ Unforced Capacity (UCAP)

- De-rate thermal plants based on uncorrelated forced outages
- Inconsistent with how renewables are treated (i.e. windless periods affect all wind resources at the same time)
- + Marginal ELCC
 - Simulate thermal resources identically to renewable and storage resources

Present

Future

What Do Marginal ELCCs Look Like?

Illustrative Marginal ELCC Values for California

PJM 2025/2026 Marginal ELCC Class Ratings

ELCC Class	Final Rating
Onshore Wind	35%
Offshore Wind	60%
Solar Fixed Panel	9%
Solar Tracking Panel	14%
Landfill Gas Intermittent	54%
Hydro Intermittent	37%
4-hr Storage	59%
6-hr Storage	67%
8-hr Storage	68%
10-hr Storage	78%
DR	76%
Nuclear	95%
Coal	84%
Gas CC	79%
Gas CT	62%
Gas CT Dual Fuel	79%
Diesel	92%
Steam	75%

The Role of Performance Penalties

 Strong and consistent penalties ensure that resources perform as they are accredited, mitigating the incentive to sell capacity above actual capability which has the double impact of creating phantom capacity and depressing prices, pushing actual capacity out of the market

Ongoing Exploration and Refinements

- + Capacity market design has been an area of ongoing refinements in the two+ decades of their history
- + Active issues that ISOs are currently exploring include
 - Setting capacity requirements and accrediting resources on an **annual or seasonal basis**
 - Running capacity market auctions on a multi-year forward or prompt basis
 - Accrediting the capacity of resources differently based on their geographic location (including transmission deliverability)
 - Allocating capacity requirements to loads based on pro-rata usage during the gross peak or highest reliability risk hours

Thank You!

Zach Ming, Sr. Director 44 Montgomery St. Suite 1500 San Francisco, CA 94104 zachary.ming@ethree.com