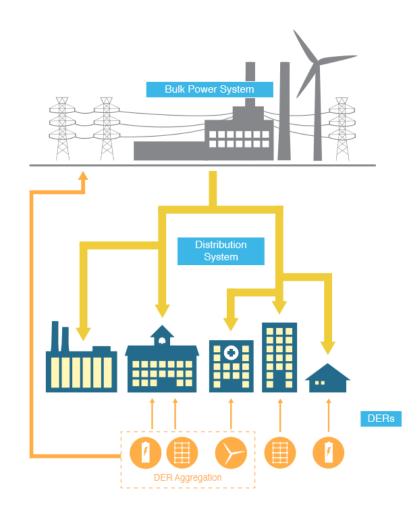
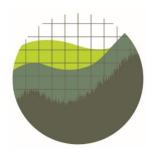


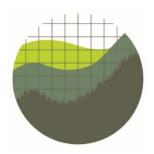
Institute for Policy Integrity


NEW YORK UNIVERSITY SCHOOL OF LAW


Distributed Energy Resources: Values and Compensation Mechanisms

National Council on Electricity Policy Annual Meeting December 7th, 2020 Burcin Unel, Ph.D.

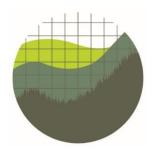
The Electricity Grid and DERs



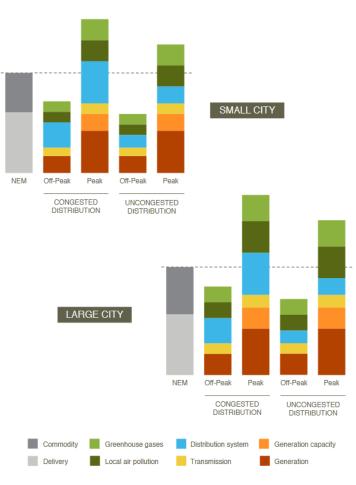
Value of DERs – Costs and Benefits

Table 4. Potential Benefits of DERs.

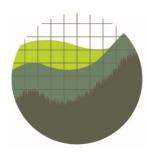
Perspective	Category	Benefit	
Electricity system stakeholders (i.e., utilities and their customers, including DER owners)	Bulk power system	Avoided energy costs	
		Avoided generation capacity costs	
		Avoided reserves and ancillary services costs	
		Avoided transmission capital costs and line loss	
		Avoided financial risk of primary energy source price volatility	
		Avoided environmental compliance costs	
	Distribution system	Avoided distribution capital costs and line losses	
Society	Public health and safety	Improved resilience to disruptive hazards and stressors	
		Public health benefits of avoided local pollution	
	Environmental	Environmental benefits of avoided local pollution	
		Avoided greenhouse gas emissions	



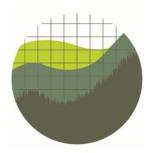
Value of DERs – Costs and Benefits


Table 5. Costs of DERs.

Perspective	Category	Costs	
Utilities + ratepayers who do not own DERs	Program costs	Measure costs (to utility)	
		Financial incentives	
		Program and administrative costs	
		Evaluation, measurement, and verification	
	Integration	Interconnection costs (in excess of utility's own costs of interconnection)	
	Capital costs (if any)	Distribution grid segment upgrades prompted by DER additions*	
DER owners	Costs of DER adoption and operation	Measure costs (to participants)	
		Interconnection fees	
		Annual operations and maintenance costs	
		Resource consumption by participant	
		Transaction costs to participant	

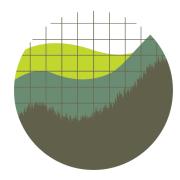

* At least some of this category of costs is often paid by DER developers


DER Compensation – Net Metering vs Value Stacks



Source: Policy Integrity, Getting the Value of Distributed Energy Resources Right

Environmental Value of DERs



Calculating Value Stacks

Table 7. Value stack components, their underlying dynamic metric(s),and their temporal and locational parameters.

Component	Metric and/or Units	Interval	Geography
Wholesale energy (including generation, congestion, and line losses)	LMP [\$/MWh]	Hour	Wholesale market node (or zone)
Wholesale capacity	Installed capacity or "ICAP" ¹⁰⁷	Varies by jurisdiction	
Transmission	Varies by jurisdiction; ¹⁰⁸ LMP & ICAP capture some but not all capital and O&M costs of transmission	Six months	
Distribution system capacity and line losses	Utilities' marginal costs of service	Decade	As local as possible: primary feeder, lateral feeder, transformer
Greenhouse gases	[CO ₂ e / MWh]	Hour	Wholesale market zone
Ambient air pollutants	[PM, SOx, NOx / MWh]	Hour	As granular as is supported by available tools e.g., EASIUR, InMap
Resilience	Varies by jurisdiction	Varies by jurisdiction	Distribution utility service territory

Institute for Policy Integrity

NEW YORK UNIVERSITY SCHOOL OF LAW

For questions and comments: Burcin Unel, Ph.D. Energy Policy Director <u>burcin.unel@nyu.edu</u>

(212) 992-6285