Long Duration Storage: What’s on tap?

October 13, 4:00-5:00 PM ET

Moderator: Hon. Carrie Zalewski, Illinois

Panelists:
 - Jason Houck, Sr. Manager, Policy and Regulatory Affairs, Form Energy
 - Michael Purdie, Director of Regulatory Affairs and Markets, National Hydropower Association
 - Greggory Kresge, Sr. Manager, Utility Engagement and Transportation Electrification – US Energy, World Resources Institute
 - Dr. Kevin Harrison, Program Manager, National Renewable Energy Laboratory
Opening Remarks

Hon. Carrie Zalewski, IL
Panelists

- **Jason Houck**, Sr. Manager, Policy and Regulatory Affairs, Form Energy
- **Michael Purdie**, Director of Regulatory Affairs and Markets, National Hydropower Association
- **Dr. Kevin Harrison**, Program Manager, National Renewable Energy Laboratory
BREAKTHROUGH LOW-COST, MULTI-DAY ENERGY STORAGE

NARUC Long Duration Storage Webinar
Jason Houck, Sr. Manager, Policy & Regulatory Affairs
October 13, 2022
Rising to the challenge of climate change with a team that will deliver

LED BY ENERGY STORAGE VETERANS

Decades of cumulative experience in energy storage
- 100's of MW of storage deployed

OUR INVESTORS: LONG-TERM AND IMPACT-FOCUSED

$820M in venture capital from Breakthrough Energy Ventures (BEV), TPG’s Climate Rise Fund, Coatue Management, NGP Energy Technology Partners III, ArcelorMittal, Temasek, Energy Impact Partners, Prelude Ventures, MIT’s The Engine, Capricorn Investment Group, Eni Next, Macquarie Capital and other long-term, impact oriented investors
Weather-driven multi-day reliability challenges are widespread

Pacific Northwest Multi-Day Weather Event, 2050

Source: E3, [Resource Adequacy in the Pacific Northwest](#)

Upper Midwest Multi-Day Weather Event in Winter, 2019

California Multi-Day Weather Event in Winter, 2050

Source: E3: [Long-Run Resource Adequacy Under Deep Decarbonization](#)

New England Multi-day offshore wind lull, 2000

Source: DNV-GL Analysis of Stochastic Dataset for ISO-NE
Rechargeable iron-air is the best technology for multi-day storage

Reversible Rust Battery

- **COST**
 - Lowest cost rechargeable battery chemistry.
 - Chemistry entitlement <$1.00/kWh

- **SAFETY**
 - No thermal runaway (unlike li-ion)
 - Non-flammable aqueous electrolyte

- **SCALE**
 - Iron is the most globally abundant metal
 - Easily scalable to meet TW demand for storage

- **DURABILITY**
 - Iron electrode durability proven through decades of life and 1000’s of cycles (Fe-Ni)
<table>
<thead>
<tr>
<th>Cell</th>
<th>Battery Module</th>
<th>Enclosure</th>
<th>Power Block</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>~0.10 kW / 10 kWh</td>
<td>~5 kW / 500 kWh</td>
<td>~50 kW</td>
<td>~3.5 MW / 350 MWh</td>
<td>100+ MW / 10 GWh</td>
</tr>
<tr>
<td>~1m x 60 cm</td>
<td>~2.3 x 1.3 x 1.3m</td>
<td>8.6’ x 40’</td>
<td><2 acres</td>
<td>50+ acres</td>
</tr>
<tr>
<td>Electrodes + Electrolyte</td>
<td>~50 Cells</td>
<td>~10 Modules</td>
<td>~50 - 100 Enclosures</td>
<td>10s - 100s of Power Blocks</td>
</tr>
<tr>
<td>Smallest Electrochemical Functional Unit</td>
<td>Smallest Building Block of DC Power</td>
<td>Product Building Block with integrated module auxiliary systems</td>
<td>Smallest independent system and AC Power building block</td>
<td>Commercial Intent System</td>
</tr>
</tbody>
</table>
Form Energy’s path to transform the global grid

2023/2024
- Prove Technology at Scale
 - 1-10 MW scale projects
 - Demonstrate value in real world environment

2025
- Initial Commercial Projects
 - 10-100+ MW scale projects
 - Demonstrate bankability

2026
- Full Scale Installations
 - 100+ MW scale projects
 - Bankable coal and gas replacement

2030s
- Deep Decarbonization
 - GW-scale projects
 - Meet carbon goals and manage risk

30 years after commercial availability, global lithium-ion manufacturing capacity was 500 GWh/yr in 2020. Form Energy will exceed that scale before 2030.
GWs of multi-day storage projects deployed by 2030 will enable a lower carbon, more resilient electricity grid

- Improved grid reliability & resilience
- Higher renewables penetration
- Accelerated fossil retirements
- Lower cost emissions reductions
- Less congestion and curtailment
NARUC Long Duration Energy Storage Webinar

Pumped Storage Value Proposition
How Do Pumped-Storage Hydro Plants Work?

Source: https://www.duke-energy.com/energy-education/how-energy-works/pumped-storage-hydro-plants
The Landscape

• EIA projects the share of electricity from renewables will grow from 21% in 2020 to 42% in 2040.
 • In order to integrate these resources, the system needs flexible capacity that can ramp up and down quickly.
 • As we’ll see in the next few slides, long duration storage will be needed.

• Pumped Storage (PSH) has an existing installed capacity approximately 23 gigawatts (GW).
 • Makes up approximately 93% of the electric storage capacity in the U.S.
 • Between 2010-2019, net PSH capacity increased by 1.33 GWs from upgrades at six existing facilities.
Emissions Intensity

FIGURE 1. Hour-by-hour emissions intensity for 2020

Image credit: Peninsula Clean Energy (2022), Our Path to 24/7 Renewable Energy by 2025.
https://www.peninsulacleanenergy.com/our-path-to-24-7-renewable-power-by-2025/
Evolving Operations

Duke Energy’s Jocassee Pumped Storage Hydropower Facility in South Carolina

Evolving Operations

Source: Courtright Reservoir, the upper reservoir for Pacific Gas & Electric’s Helms Power Plant. Photo credit USFWS at http://www.fs.usda.gov/detail/sierra/recreation/?cid=stelprdb5245570

Future PSH Development and Challenges

• According to the Department of Energy, Levelized Cost of Storage ($/MWh) for PSH can run between $121-$209/MWh.

• Three projects totaling 1.8 GWs have received a FERC license.

• Approximately 40 other applicants have received preliminary permits.

• Challenges to development of new PSH include lengthy licensing process and long lead times for development.

Technical Potential

• The United States still has 35 TWh of unused, cost-competitive, closed-loop PSH potential outside legislatively protected wilderness.

• Much of this potential is provided by the terrain in the American West.

Thank You!

Michael Purdie
Michael@hydro.org
VEHICLE-TO-EVERYTHING TECHNOLOGY & LONG DURATION STORAGE APPLICATIONS
WRI Electric School Bus Initiative

Photo: Byronv2, flickr
Why Electrify the U.S. school bus fleet?

Electrification can accelerate decarbonization while bringing direct, tangible benefits to every community.

- **Improved health** and cognitive outcomes for children
- **Cleaner air**, especially in high-pollution corridors and communities of color
- **Reduced operating expenses** for school districts
- **New jobs** in green manufacturing
- **A tipping point** for MHD + electrification
- **Enhanced resiliency** and **renewables integration** with V2G
Our vision involves multiple stakeholders

Goal: An Equitable Transition to Electric School Buses

Foundation: Equity, Communications, Engagement
Proactive utility engagement for electric school bus deployment
What is V2X?

- Vehicle-to-Everything (V2X): All encompassing where stored energy in the vehicle is discharged for some benefit. This is the preferred term. This is often mistaken for V2G

What is V2G?

- Vehicle-to-grid (V2G) is a technology that allows power stored in electric vehicle batteries to be pushed back on to the electric grid where the electrons mix with those from other generating sources
Unmanaged Charging
Vehicles are plugged in to a charger and electricity flows from the grid to the vehicle at the greatest power capable. EVs charge without regard for the impact charging has on the electric grid.

V1G: Managed charging
Electricity flows from grid to vehicle. The time at which charging occurs and/or the quantity of power used to charge are managed to benefit the grid.

V2X: Bidirectional Charging Includes -
- Vehicle-to-Grid (V2G): Stored energy in the vehicle is discharged back through facility infrastructure (reverse power flow) pass the meter onto the grid to mix with other electrons from other sources/facilities.
- Vehicle grid integration (VGI): Where charging and discharging of the vehicle is done in coordination with grid demand to work as a grid asset.
- Vehicle-to-Building (V2B): Stored energy in the vehicle is discharged to the facility/building only.
- Vehicle-to-Load (V2L): Stored Energy in the vehicle is discharged to some load that requires electricity to operate.
- Vehicle-to-Everything (V2X): All encompassing where stored energy in the vehicle is discharged for some benefit.

When power flow occurs is managed.
The quantity of power flow managed.
Electric school buses are well-suited to support V2X

- Predictable operational schedules
- Large battery capacity
- Benefits for school districts
Benefits of V2X

Grid Flexibility & Emergency Preparedness
- V2X services provide grid operators with an on-demand source of power that can provide a range of services. Vehicles can also provide back-up power and mobile power supplies in emergencies.

Decarbonization: Support Renewables
- V2X allows vehicles to absorb renewable energy generation when it is abundant and release that energy when it is not.

Compensation: Lowers Total Cost of Ownership (TCO)
- V2X can generate value by providing services to the grid where vehicle operators are compensated.
V2X Applications

- Energy stored in the batteries of electric school buses can support a range of services and functions
- Some of the most common services include:
 - Demand Charge Mitigation
 - Microgrid/Site Power
 - Demand response
 - Frequency regulation
 - Energy arbitrage
 - Energy arbitrage in support of renewables
 - Emergency preparedness and response

Source: Uddin et al. 2017
Disaster RESPONSE OPPORTUNITIES FOR ESB

WRI would use this in engaging with schools to identify resiliency needs for potential FEMA Mitigation Funding grants

What is a Mutual Aid Agreement?

Mutual aid agreements establish the terms under which one party provides resources—personnel, teams, facilities, equipment, and supplies—to another party.

- V2X MAA template produced from - [National Incident Management System - Guideline for Mutual Aid (fema.gov)](fema.gov)
- MAAs can apply to specific emergency scenarios and will vary in scope (interstate, intrastate, local emergencies)
- MAA examples
 - CA – Disaster and Civil Defense Master MAA
 - CO – Pueblo County Fire Protection MAA
 - NJ – Hazardous Materials MAA
 - Texas – Public Water Utilities MAA
In Development: V2X Disaster Response White Paper

• Want a prescriptive white paper – a "recipe" that describes the equipment needed and steps to follow for establishing a V2X-ESB system to provide emergency back-up power services

• Hoping to identify a partner school district to conduct a real-world microgrid ESB project specifically focused on V2B and building load isolation for shelter services
 • Potential Project Team:
 • WRI ESBI
 • Utility
 • Priority Outreach School District
 • Bidirectional Charger Mfrs.
 • Bus Mfrs.
 • Partner NGOs
 • Gov. Agencies - DOE, FEMA, NEMA
3 Design Considerations for ESB V2G Programs
1. Equity First

Does the Program Prioritize an Equity-First Approach when Selecting Partners and Locations?

Electric school buses with V2G technologies offer an opportunity to advance an equity-driven agenda given the air quality, health and resiliency benefits that may be amplified in underserved communities where residents face higher levels of pollution and are more susceptible to climate change impacts. Several proposed or deployed V2G utility programs have focused on underserved communities, identified through indicators such as the number of students eligible for free and reduced lunches or average family income.
Does the Program Consider New Rates to Enable School Bus Electrification and V2G Applications?

Using electricity for powering buses typically results in significant cost savings compared to relying on diesel fuels. However, specific electricity rate designs, which can vary widely across the U.S., influence the economics of electric school buses and can be particularly important if using V2G applications. Electricity rate structures can influence when buses are charged or when it makes sense to discharge electricity. In some cases, districts may face higher costs for charging during peak usage periods. Or they may face higher demand charges if their overall power usage increases during a specific hour (or, sometimes, a 15-minute interval) during a month.
3. Community Resilience

Does the Program Help Drive Community Resilience?

Electric school buses could play a role in disaster recovery and response by providing electricity during hurricanes, fires, floods and other emergencies. With climate change, natural disasters are becoming more frequent and more intense. By 2030, floods will affect more than 145 million people, including many who live in coastal areas of the United States. During extreme weather and other emergencies, interconnected infrastructure systems can fail due to power outages that stop core community operations and expose the most vulnerable residents to disproportionately high risk.
Thank you

Please contact Gregg Kresge at Gregg.Kresge@email.com
Electrons-to-Molecules
Electrolytic H₂ as a Pathway for Renewable Fuel Production, Energy Storage, & Waste-to-Energy Applications

Nancy Dowe, Kevin Harrison, and Claire Victor
October 13th, 2022
NARUC Long Duration Storage Webinar
Energy Storage: Electrons-to-Molecules

Over 130 billion cubic feet of natural gas storage capacity exists in Southern California.

To put this in perspective, this is enough to supply all of the gas-fired generation in the region for more than two months.

- SoCalGas

https://www.energy.gov/eere/fuelcells/hydrogen-storage
H₂@Scale Initiative

Benefits of Renewable H₂
- Enables higher penetration of renewable electricity
- Electrolyzer can provide grid services
- H₂ is used in many aspects of our energy system
- O₂ is a byproduct
- Growing transportation sector
- Reduces fossil fuel consumption
- Scale-able, non-toxic, low temperature process

10 MM tons H₂ /year in U.S.
https://www.energy.gov/eere/fuelcells/h2scale
TECHNOLOGY OVERVIEW

$4 \mathrm{H}_2\mathrm{O} + \mathrm{e}^- \rightarrow 4 \mathrm{H}_2 + 2 \mathrm{O}_2$

$\mathrm{CO}_2 + 4 \mathrm{H}_2 \rightarrow \mathrm{CH}_4 + 2 \mathrm{H}_2\mathrm{O}$

Electrolysis

Water

Electricity (~ 50 kWh/kg Hz)

H$_2$

CO_2

Methanogenic Organisms

Biomethanation

Biogas (~ 60 CH$_4$: 40 CO$_2$)

Water Treatment

Agriculture

Landfill/Food Waste

Ethanol

Petroleum

Renewable

Fossil

Nuclear

Industrial Processes

CO$_2$ Input

Natural Gas Grid

Storage, Transport, & Utilization

Electricity Generation

Heating

Chemicals

Fuels
Anaerobic Digester
Mesophilic (30°C – 38°C) or thermophilic (49°C – 57°C)

H₂ Production, 60 – 80°C
1MW, ~20kg/hr
80% efficient (HHV)

- 50 – 55 kWh / kg H₂ @Scale
- 9L per kg H₂ Electrolysis only
KEY ENABLERS

1. Low-cost, Low-carbon Electricity

- Select renewable technologies (e.g., utility scale solar PV and wind) are cost-competitive with conventional generation technologies when considering unsubsidized levelized cost of electricity.

2. Waste-to-Energy

- Biomethanation via the 13,500+ potential biogas and other CO2 sources can increase RNG production by ~70% over gas separation technologies (e.g., membranes, amine).

3. Carbon Markets

<table>
<thead>
<tr>
<th></th>
<th>Federal RFS</th>
<th>CA LCFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manure</td>
<td>D3</td>
<td>-250 CI</td>
</tr>
<tr>
<td></td>
<td>$19.93/mbtu</td>
<td>$61.98/mbtu</td>
</tr>
<tr>
<td>Food Waste</td>
<td>- -</td>
<td>0 CI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$15.54/mbtu -25 CI</td>
</tr>
<tr>
<td>Wastewater</td>
<td>D3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$19.93/mbtu</td>
<td></td>
</tr>
<tr>
<td>Landfill</td>
<td>D3</td>
<td>45 CI</td>
</tr>
<tr>
<td></td>
<td>$19.93/mbtu</td>
<td>$7.18/mbtu</td>
</tr>
</tbody>
</table>

Examples of Federal and state carbon markets support RNG and other fuel production.

4. Long-duration Energy Storage

- In addition to its high energy density, methane has high storage capacity for long-duration energy storage.

- The existing NG Network alone has Terawatt-hour-scale energy storage capacity via underground geological and pipelines.
CURRENT PROJECTS

EL/Bioreactor Integration
SoCalGas, BETO, HFTO, & University of Chicago
Close-coupling of electrolyzer and bioreactor to advance IP, advancing water management techniques, and improving hydrogen mass transfer with advanced gas mixing

Biopower
BETO, Electrochaea, & SoCalGas
Producing pipeline quality RNG from Biomethanation via 20L bioreactor on a mobile RD&D platform and collaborating with ANL to investigate CI from dairies with TEA/LCA

Peaks Renewables
BETO, SoCalGas, Electrochaea, Plug, & CDM Smith
Summit Utilities/Peaks Renewables to deploy biomethanation at a dairy digester, integration with renewable electricity & hydrogen production
ACCOMPLISHMENTS

- **Application No. 17/261,473**
 - **Improving capital and operating costs of the electrolyzer**
 - 5-10% EL capital cost reduction
 - 3-5% EL system efficiency improvement
 - Advancement of operational safety via elimination of dissolved H$_2$ at EL anode

- **Application No. 17/397,665**
 - **Using stack current for H$_2$ mass flow and gas ratio control**
 - Enhancement of mixed gas ratio control
 - Improvement of H$_2$ mass transfer
 - Elimination of H$_2$ mass flowmeter and flow control valve

[Operations]
- Installed, commissioned, & operated 700 L, 18 bar reactor for 300+ hours

[Mobile RD&D]
- 3D model & control room fabrication complete

[Controls]
- Power and control system design complete & installation initiated

[Thermal]
- PHA, fabrication, & leak test complete

[Bioreactor]
- PHA, pressure test, & sensor validation complete

[Dosing]
- Design, PHA, & part specification complete

Mobile RD&D Platform
- 20L, 18 bar
PATH FORWARD

Cost & Efficiency
De-risk two-step biomethanation process by improving cost and efficiency

Decarbonization
Complete pathway certification for waste-to-energy feedstocks, and GHG reduction at pilot-scale installations

H₂ Gas Mass Transfer
Investigate gas sparger designs and conduct bubble analyses with high-speed imaging

Water Management
Improve water removal in the gas phase of the bioreactor to maintain organisms & nutrients

Thermal Management
Recycle waste heat from electrolyzer and bioreactor for downstream processes
Thank You
Panelists

- **Jason Houck**, Sr. Manager, Policy and Regulatory Affairs, Form Energy
- **Michael Purdie**, Director of Regulatory Affairs and Markets, National Hydropower Association
- **Dr. Kevin Harrison**, Program Manager, National Renewable Energy Laboratory
SAVE THE DATE: Monday, January 30, 4-5 PM EST

Long Duration Storage Virtual Site Visit

Join AEE institute and Form Energy for a virtual tour of Form Energy’s state-of-the-art lab facilities. Get a behind-the-scenes look at how Form Energy is ramping up to produce its low-cost, 100-hour iron-air batteries.

Form Energy’s CTO, William Woodford, will discuss the development of Form’s groundbreaking iron-air technology and Form’s plan to rapidly scale manufacturing capacity. Form Energy’s CEO, Mateo Jaramillo, and Nidhi Thakar, VP of Policy and Regulatory Affairs, will host a Q&A in the latter half of the program.

Invitations coming soon! Contact Sophie Watterson (swatterson@aeen.net) with any questions.
Upcoming

• NARUC Annual Meeting & Education Conference in New Orleans, November 13-16, 2022

• Check www.naruc.org/cpi for information on upcoming activities
Thank you!

Visit www.naruc.org/cpi for additional resources