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Executive Summary
Recent extreme weather events, natural disasters, and cyber incursions have brought the vulnerability of the electric 
system into sharp focus. These events have demonstrated that planning for long-duration power interruptions 
caused by high-impact, low-probability events will require new approaches to power system resilience above and 
beyond previous hardening efforts. At the same time, the rapid growth and declining costs of distributed energy 
resources (DERs) such as microgrids, solar photovoltaics, and batteries have introduced new technology options 
for energy resilience. Consequently, state policymakers across the country have established electricity resilience 
policies and programs, with several states focusing specifically on resilient DERs as part of clean energy programs 
and grid modernization efforts. 

Although it is clear that DERs offer resilience benefits, it is unclear how to determine the value of those benefits. 
Identifying appropriate methodologies to calculate the value of resilience will be an important step toward ensuring 
that resilient DERs are considered alongside alternatives and integrated into future energy infrastructure and 
investment planning efforts. This paper reviews current practices for calculating the value of resilience with a focus 
on valuing resilient DERs installed within the distribution system. It examines both regulatory decision-making and 
non-regulatory cost-benefit analyses in order to determine if, and how, a value of resilience was calculated and 
applied. The paper is designed to address questions that utility regulators have identified as being of interest. The 
questions are listed below, along with the conclusions reached in this report.

Have regulators identified and utilized a value of resilience in regulatory decisions related to resilient DERs? 
No. A review of regulatory proceedings was conducted to find instances in which regulators have considered 
investments in resilient DERs. Three regulatory proceedings—two in Maryland and one in Illinois—were reviewed 
in detail. In each of these proceedings, resilience was identified as an important potential benefit of DERs, but no 
specific value of resilience was determined. The regulatory proceedings present qualitative arguments for and 
against resilience investments, but they do not establish a precedent for quantifying and monetizing resilience.

Is the value of resilience being used to analyze resilient DERs in venues other than regulatory proceedings? 
Yes. Decision-makers and analysts have used a variety of methods to quantify the value of resilience for DERs 
outside of regulatory proceedings. This report examines four case studies in which a value of resilience was 
incorporated into decision-making—three case studies in New York and one focused on the military. The report 
reviews the context of the resilience investment, valuation methods used, and results of each analysis.

What are the different methods to value energy resilience?
There are a number of approaches to valuing avoided power interruptions, which is currently the standard 
proxy for quantifying energy resilience. This report identifies two broad categories of analysis (economy-wide 
vs. bottom-up). Each category encompasses a variety of data collection approaches (e.g., stated preference vs. 
revealed preference approaches) and quantitative tools (e.g., ICE calculator, FEMA BCA, and IMPLAN). The four 
case studies conducted for this report correspond to four different specific methods that have been used to analyze 
the resilience value of DER: contingent valuation, the defensive behavior method, the damage cost method, and 
input-output modeling. 

What are the pros and cons of different methods used to value resilience?
There is a large body of academic and technical literature on the value of non-market goods. This report does not 
comprehensively re-examine the pros and cons of different valuation methods. The report focuses specifically on 
the methods that have been used to analyze the energy resilience value of DERs. The different methods are then 
evaluated according to usefulness to regulators. The four criteria used in the evaluation include the method’s ease 
of use, scope of outputs, geographic scalability, and power interruption duration analysis capability (ES-Figure 1).

Can regulators adopt or improve value of resilience methods to support their decisions?
Some of the valuation methodologies examined in this report may be useful in regulatory decision-making, but 
none of the methods reviewed met all four criteria for regulator usefulness and usability. No single method is 
capable of capturing all regulatory concerns regarding the resilience value of DERs. 
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ES-Figure 1. Pros and Cons of Selected Resilience Valuation Methodologies

GREEN: The method meets the criteria; i.e., the method can be used to analyze long-term power interruptions, 
it is readily scalable to different geographic levels, it is relatively easy to use, or its outputs can inform regulatory 
decisions related to resilience investments. 

RED: The method does not meet the criteria; i.e., the method cannot readily analyze long-term interruption 
durations, it cannot be applied to different geographic scales, it is difficult or costly to use, or its outputs are less 
relevant to regulatory decision making.

YELLOW: There are pros and cons in terms of how the method relates to the criteria.

Given the lack of precedent from regulatory proceedings and the pros and cons of the models used outside of 
regulatory proceedings, regulators have several options when attempting to evaluate resilient DER investments: 

	 •	  �Omit consideration of the value of resilience in cost-benefit analysis.

	 •	  �Utilize decision-making approaches that do not require a resilience benefit to be quantified,  such as cost-
effectiveness analysis.

	 •	  �Adopt one of the methods examined in the case studies.

	 •	  �Adapt other methods that have been used to value avoided power interruptions, but have not yet been  
used to quantify the resilience value of DERs.

	 •	  �Actively engage with the ongoing research efforts focused on new approaches to valuation.

Each of these options has its own sets of tradeoffs and potential limitations. The difficulties involved in valuing 
resilience relate directly to the challenges inherent in analyzing high-impact, low-probability power interruption 
events. Regulators seeking to evaluate resilience investments will need to grapple with these challenges against 
the backdrop of increasingly severe threats to the electricity grid. 

1.  Introduction
During the past two decades, electric utilities have made significant investments in infrastructure hardening 
following storms such as Hurricane Katrina (2005), Hurricane Ike (2008), and Superstorm Sandy (2012) (Carey, 
2014; EEI, 2014). However, recent events such as Hurricane Maria (RPRAC, 2018), Russian cyber incursions against 
U.S. critical infrastructure (NCCIC, 2018), and record fires in the Western United States (Arango & Medina, 2018; 
Sterling, 2018) have brought the continued vulnerability of the electric system into sharp focus. These events have 
demonstrated that planning for long-duration power interruptions caused by high-impact, low-probability events 
will require new approaches to power system resilience above and beyond previous hardening efforts (National 
Academies, 2017; Preston et al., 2016). While resilience investments have often been made reactively, the growing 

Figure	1	Pros	and	Cons	of	Selected	Resilience	Valuation	Methodologies	
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risk of high-impact, low-probability events and “black sky hazards1” suggests the need to embrace a more proactive 
planning approach–one that anticipates future threats and invests in new solutions well in advance.

The rapid growth and declining costs of distributed energy resources (DERs), such as microgrids, solar photovoltaics 
(PV), and batteries, have introduced new technology options for energy resilience. Back-up power systems such 
as diesel generators or uninterruptible power systems can only supply power for a limited time before they run 
out of fuel (Energetic Incorporated et al., 2009; Phillips et al., 2016). Conventional back-up systems also typically 
operate only during power interruptions. New technologies such as resilient solar systems (see Text Box 1) offer 
distinct advantages over diesel generation, including emissions-free generation, an unlimited fuel supply, and the 
ability to generate savings and revenue streams when not serving in an emergency power role (Mullendore & 
Milford, 2015). Although variable energy sources such as solar can  also create grid integration challenges,2 the 
pairing of variable generation with storage can help alleviate these concerns (Hirsch et al., 2018). This report 
focuses primarily on opportunities to deploy microgrids and resilient solar (collectively referred to in this paper as 
“resilient DERs”) for critical infrastructure and at critical facilities.  

The practice of integrating resilient DERs into resilience planning is still at an early stage. Although it is clear that 
DERs can offer resilience benefits, it is unclear how to determine the value of those benefits. Identifying appropriate 
methodologies to calculate the value of resilience will be an important step toward ensuring that resilient DERs 
are considered alongside alternatives and integrated into future energy infrastructure and investment planning 
efforts (National Academies, 2017). This paper reviews current practices for calculating the value of resilience with 
a specific focus on resilient DERs installed within the distribution system.3 

Text Box 1. Defining Resilient Distributed Energy Resources (DERs)

1	  �According to Stockton (2014), black sky hazards are described as “extraordinary and hazardous catastrophes utterly unlike the blue sky days during which utilities typically 
operate” “where more than 90% of a utility’s customers experience outages of more than 25 days.” Black sky events can be triggered by “coordinated cyber, physical, and 
blended attacks; the electromagnetic pulse effects created by the high-altitude detonation of a nuclear weapon; and major natural disasters like earthquakes, tsunamis, 
large hurricanes, pandemics, and geomagnetic disturbances (GMD) caused by solar weather.”

2	   �Variable resources such as solar PV may pose integration challenges at the bulk power and distribution grid levels. Issues related to grid integration of variable resources 
are beyond the scope of this report and can be found in other reports (e.g., Bird et al., 2013; Palmintier et al., 2016; Hirsch et al., 2018).

3	   �The focus on resilient DER deployment is related to, but distinct from, research into value-based planning for generation, transmission and distribution, and operations 
(Sullivan et al., 2018). Whereas this paper focuses on smaller-scale generation and storage resources installed in specific locations, value-based planning has focused on 
costs and benefits of system-wide investments such as hardening distribution infrastructure through undergrounding (Larsen, 2016).

NARUC (2016) defines a DER as: “a resource sited close to customers that can provide all or some of their 
immediate electric and power needs and can also be used by the system to either reduce demand (such 
as energy efficiency) or provide supply to satisfy the energy, capacity, or ancillary service needs of the 
distribution grid. The resources, if providing electricity or thermal energy, are small in scale, connected to 
the distribution system, and close to load. Examples of different types of DER include solar photovoltaic 
(PV), wind, combined heat and power (CHP), energy storage, demand response (DR), electric vehicles (EVs), 
microgrids, and energy efficiency (EE).” 

Although a broad range of DERs can be configured to contribute to resilience objectives, this report focuses 
primarily on microgrids and on resilient solar—both defined below—which are collectively referred to as 
“resilient DERs.” 

	•	  �Microgrids are defined as “an integrated energy system consisting of interconnected loads and energy 
resources which, as an integrated system, can island from the local utility grid and function as a stand-
alone system (Judson et al., 2016).” 

	•	  �Resilient solar is defined as “solar PV systems which can operate during electrical outages, provide 
emergency power to facilities, as well as provide electricity under normal conditions. The term ‘resilient 
solar’ includes technologies such as a solar PV System paired with: 1) battery backup… 2) auxiliary 
generation such as a diesel generator to reduce fuel needs or a combined heat and power system, 3) an 
inverter with emergency ‘daylight’ power outlet (Case et al., 2017).” 
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At present, there are no standardized approaches for policy makers or energy project developers to identify and 
value energy resilience investments at the state, local, or individual facility levels. This lack of standard practice 
is further complicated by the existence of numerous and ongoing grid resilience discussions focused at different 
levels of governance (Unel & Zevin, 2018). At the federal level, there continues to be significant debate regarding  
how best to target resilience investments as a matter of national policy (Palmer et al., 2018; Silverstein et al., 
2018). At the same time, state and local governments across the country are exploring energy resilience (NGA, 
2016; Sanders & Milford, 2015), whereas institutions such as the U.S. Department of Defense (DoD) are working 
to assure energy supply to specific critical facilities and loads (Judson et al., 2016; Narayanan et al., 2017; Samaras 
& Willis, 2013). The utility industry is engaged in resilience investment planning as well (EPRI, 2016); several utility 
companies have partnered with the U.S. Department of Energy (DOE) specifically on resilience strategies that 
address the impacts of climate change (U.S. DOE, 2016). Although these ongoing discussions are inter-related, 
there are currently few practical connection or translation points between them. The field of energy resilience 
remains highly dynamic and complex.

This paper does not attempt to summarize the energy resilience landscape. It instead focuses on questions related 
to resilient DER that utility regulators have identified4 as being of interest: 

	 •	  �Have regulators identified and utilized a value of resilience in regulatory decisions related to resilient DERs?

	 •	  �Is the value of resilience being used to analyze resilient DER in venues other than regulatory proceedings? 

	 •	  �What are the different methods to value energy resilience?

	 •	  �What are the pros and cons of different methods used to value resilience?

	 •	  �Can regulators adopt or improve value of resilience methods to support their decisions?

This paper is structured as follows:

	 •	  �Section 2 reviews the definitions of resilience and reliability and provides context on state programs to 
promote resilient DERs;

	 •	  �Section 3 reviews recent regulatory proceedings that have considered the resilience benefit of DERs;

	 •	  �Section 4 summarizes and compares the different quantitative methodologies that have been used 
to characterize the resilience value of DERs and presents case studies of their use outside of regulatory 
proceedings; and

	 •	  �Section 5 presents conclusions and recommends next steps.

2.  Resilience, Reliability, and State Policy
The concept of reliability is familiar to state regulators, and reliability standards are used to support regulatory 
decision making across the country. Resilience5 is closely related to reliability, but the concepts are not identical. 
This section defines resilience for the purpose of this report and differentiates it from reliability.

2.1.  The Definition of Resilience

Many different definitions of the term “resilience” can be drawn from a wide range of disciplines (Martin-Breen & 
Anderies, 2011). Divergent definitions exist even within the field of power system resilience (Sanstad, 2016; Taft, 
2017; IEEE, 2018). This paper uses the definition developed by NARUC: 

Robustness and recovery characteristics of utility infrastructure and operations, which avoid or minimize 
interruptions of service during an extraordinary and hazardous event (Keogh & Cody, 2013).

4	   �These questions were reviewed and refined with state regulators, commission staff, and industry experts from around the country during workshops in 2018 focusing on 
the “Intersection of Resilience and DERs” hosted by NARUC on August 14 in Scottsdale, Aiz., by PJM on September 27 in Audubon, Pa., and jointly by NARUC and PJM on 
November 14 in Orlando, Fla.

5	   �The term resilience is used interchangeably with the term resiliency in the literature. This study uses the term “resilience” unless quoting from a source that specifically 
uses the term resiliency.  
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2.2.  Resilience vs. reliability

The concepts of power system reliability and resilience are related but distinct in how they are defined and 
measured. Electric reliability refers to the ability of the power system to “maintain the delivery of electric services 
to customers in the face of routine uncertainty in operating conditions” (Anderson et al., 2017).6 At the distribution 
level, reliability is typically measured and evaluated with indicators such as the System Average Interruption 
Duration Index (SAIDI), which presents the average power interruption duration for each customer served. State 
regulators use indicators such as SAIDI to set and track reliability standards, and to penalize or reward utilities for 
reliability performance.

A major distinction between resilience and reliability is the scale and duration of the power interruptions 
contemplated. Reliability focuses on preventing disruptions that are “more common, local, and smaller in scale 
and scope,” whereas resilience “addresses high-impact events, the consequences of which can be geographically 
and temporally widespread” (EPRI, 2016, p. 45). In many states, reliability metrics, such as SAIDI, are used to 
measure day-to-day reliability performance, and they explicitly exclude major interruption events from their 
datasets in order to avoid skewing the measurement. As a result, traditional reliability metrics are insufficient 
for characterizing resilience (Keogh & Cody, 2013).7 There are a number of organizations that are investigating 
appropriate metrics for resilience (Murphy et al., 2018), but industry-wide standards do not exist, and there are 
few examples of resilience metrics use cases (Anderson et al., 2017). 

A second distinction between resilience and reliability is that reliability focuses primarily on power interruption 
prevention, whereas resilience focuses on preserving system function during the period post-event as well. As 
summarized by the National Academies of Sciences, Engineering and Medicine (National Academies) in Enhancing 
the Resilience of the Nation’s Electricity System, 

Resilience is not the same as reliability. While minimizing the likelihood of large-area, long-duration outages 
is important, a resilient system is one that acknowledges that such outages can occur, prepares to deal with 
them, minimizes their impact when they occur, is able to restore service quickly, and draws lessons from the 
experience to improve performance in the future. (National Academies, 2017, p. 10)8

The distinctions between resilience and reliability have been delineated in the literature, but they are only 
beginning to transition from academia into the regulatory process. A recent survey of several state regulatory 
commissions by Lawrence Berkeley National Laboratory (LBNL), for example, found that the commissions surveyed 
have not historically distinguished between reliability and resilience during general rate cases or during proceedings 
dedicated to power interruptions (LaCommare et al., 2017).  A notable exception is the Public Service Electric 
& Gas Company’s (PSE&G) Energy Strong Program proceeding in New Jersey following Superstorm Sandy. The 
New Jersey Board of Public Utilities considered whether and why additional investments in grid hardening were 
required above and beyond conventional reliability measures. The Board approved an investment of more than $1 
billion, with costs to be recovered by PSE&G through a dedicated Energy Strong Adjustment Mechanism. PSE&G 
is required to report quarterly to the Board on Customer Average Interruption Duration Index (CAIDI) Major Event 
performance at the circuit, operating area, and system-wide levels (New Jersey Board of Public Utilities, 2014). 
The Maryland Public Service Commission has also created specific resilience surcharges for two investor-owned 
utilities (IOUs), and several states have highlighted resilience as a theme in recent distribution system planning 
proceedings (Homer et al., 2017). 

6	   �There are differences in the way that reliability is analyzed and measured at the bulk power and distribution system levels (Beasley & Greenwald, 2018); this paper focuses 
on utility distribution systems.

7	   �The IEEE (2012) has established voluntary guidance (IEEE Standard 1366) on how to define and track major power interruption events, and a growing number of states are 
now requiring utilities to track a separate indicator that tracks major events. This practice is not yet standard nationwide (Stockton, 2014; Larsen et al., 2016).

8	   �There is debate about whether recovery and restoration should be included in the definition of resilience of whether doing so “conflates resilience with reliability.” Taft 
(2017:2) argues that attempts to define and measure resilience should focus on power system architecture and should not combine “grid characteristics with utility 
response to external events.” 
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2.3.  Resilient DERs in state electricity policy making

Resilience is not yet a common or well-defined concept in formal utility regulatory proceedings. State policymakers 
across the country, however, are moving ahead with electricity resilience policies and programs, with several states 
focusing specifically on resilient DERs as part of clean energy programs or grid modernization efforts (Olinsky-
Paul, 2015). New York State’s Reforming the Energy Vision (REV) proceeding, for example, explicitly links the issue 
of resilience with considerations of DER expansion (NY DPS, 2014). The California Public Utilities Commission 
(CPUC) recently mandated that IOUs in the state pursue at least one pilot for DERs to demonstrate distribution 
grid services—including “resiliency (microgrid) services” under the Integrated Distributed Energy Resources 
(IDER) proceeding (CPUC, 2016, p. 6).9 The use of DERs for resilience is also a prominent focus of power system 
reconstruction efforts in Puerto Rico (Siemens, 2018; Toussie et al., 2017). As state-level resilient DER programs 
expand and mature, regulators in a growing number of states may be required to more frequently consider the 
intersection of resilience and DERs.

As discussed in Section 1, this paper focuses on resilient solar and microgrids. The number of public sector programs 
dedicated specifically to resilient solar has been limited to state and local efforts in 16 states: PSE&G is pursuing a 
resilient solar pilot in New Jersey (Powers & Sherman, 2018); Delaware introduced a solar resilience pilot in 2016 
(DESEU, 2015); Florida has installed solar and storage on schools through the SunSmart E-Shelter Program (FSEC, 
2018); and both New York City and San Francisco have published resilient solar roadmaps (Best et al., 2017; Case et 
al., 2017a). A number of states have commissioned formal studies of microgrids (Burr et al., 2013; Celtic Energy et 
al., 2017; NJBPU, 2016; NYSERDA, 2014; MDRMTF, 2014) and a growing number of states have established policies 
or programs that support microgrid deployment. Figure 1 contains an illustrative snapshot of recent resilient DER 
policy and program development at the state level. As a result of these policies (and other drivers), U.S. resilient 
DER installations are projected to grow substantially during the next five years.10

Figure 1. Resilient DER policies and programs at the state level in the United States.  

Source: Olinksy-Paul (2015); Cook et al. (2018); Shea (2016); Converge Strategies research

9	   �Pacific Gas & Electric Company (PG&E) has indicated that it is studying the feasibility of an IDER Incentive Pilot for resiliency (PG&E, 2018).

10	   �For example, GTM Research projects that total U.S. microgrid capacity will expand to 7.1 gigawatts by 2023 (Metelitsa, 2018) and that annual storage installations will 
reach 3.9 GW in the same year (GTM Research, 2018). 
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The experience of each of these states was reviewed to determine the extent to which state regulators considered 
value of resilience during the course of formal proceedings. The next section provides overviews of regulatory 
proceedings in which utility regulators evaluated proposed microgrid investments in Maryland and Illinois. 

3.  Recent experience with microgrids in regulatory proceedings
Over the past four years, there have been several prominent cases in which utilities have proposed microgrid 
investments to state public utility commissions. This Section summarizes three recent cases where requests to 
recover the costs of microgrid investments from ratepayers were considered by state public utility commissions—
two in Maryland and one in Illinois—and examines whether or not state regulators considered a value of resilience 
in their analysis. The proposals are discussed chronologically in the order in which they were filed. A review 
of these proceedings illustrates that the Commissions did not consider a specific value for resilience in their 
decision making and instead focused on other quantified benefits. The regulatory decisions in each of the three 
cases were driven by factors other than resilience. A summary of these proposals can be found in Table 1.

Table 1. Regulatory Proceedings Regarding Proposed Microgrid Investments by Utilities Table	1.	Regulatory	proceedings	regarding	proposed	microgrid	investments	by	utilities		
Utility	 Baltimore	Gas	&	Electric	 Commonwealth	Edison	 Pepco	

Proposed	Microgrid	
Location		

Columbia,	MD	(Kings	Contrivance)	
Baltimore,	MD	(Edmonson	Village)	

Chicago,	IL	(Bronzeville)	 Largo,	MD		
Rockville,	MD	
	

Total	Cost		 $16.2	million	 $12.6	million	 $63.7	million	
	

Technologies	
Included:	

Columbia,	MD:		
Natural	gas	(2	MW)		
	
Baltimore,	MD:	
Natural	gas	(3	MW)	

Phase	1:		
Solar	PV	(0.75	MW)	
Battery	storage	(0.5	MW)	
Diesel	(3	MW)	
	
Phase	2:	
Controllable	generation	(7	MW)	
(most	likely	natural	gas)	

Largo,	MD:	
Natural	gas	(5.6	MW)	
Solar	PV	(1.18	MW)	
Battery	storage	(1.85	MW)	
	
Rockville,	MD:		
Natural	gas	(6.6	MW)	
Solar	PV	(0.86	MW)	
Battery	storage	(0.25	MW)	
	

Resilience	Analysis	 Resilience	 acknowledged	 as	 a	
distinct	benefit,	but	not	quantified	
or	valued.		

Resilience	acknowledged	as	a	
distinct	benefit,	but	not	
quantified	or	valued.	

Pepco	calculated	“resiliency	
savings”	for	microgrid	participants	
using	the	Interruption	Cost	
Estimate	(ICE)	tool.	The	PSC	
determined	that	a	value	for	
community	resilience	could	not	be	
quantified.	

Approved	by	
Regulators?	

No		 Yes	 No	

Reasons	for	
Decision		

- Reliance	on	single	fuel		
- Renewables/storage	not	

incorporated	
- Unequal	distribution	of	

benefits	to	ratepayers.	
- The	concept	of	a	“major	

event”	was	not	defined	

- Community	learning	benefits	
justified	socialization	of	
costs	across	ratepayers	

	

- Resilience	benefits	not	
quantified		

- Grants	and	other	funding	
mechanisms	to	support	
project	not	pursued	

- Unequal	distribution	of	
benefits	to	ratepayers.	
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3.1.  Baltimore Gas & Electric Company
	    Maryland Public Service Commission: Case No. 9416

Summary
On December 18, 2015, Baltimore Gas & Electric Company (BGE) filed a proposal for two community microgrid 
pilots, one in the Kings Contrivance area of Columbia, Md., and the other in Baltimore City at Edmonson Village. 
The Maryland Public Service Commission (PSC) denied the proposal in an order issued on July 19, 2016 (Maryland 
PSC, 2016). Although the PSC mentioned resilience as a benefit of community microgrids, the value of resilience 
was not quantified during the proceedings. The information contained in this section is drawn from PSC Order 
87669 unless otherwise noted (Maryland PSC, 2016). 

Technology and Costs
BGE’s proposed microgrids would have been powered by two natural gas generators – a 2 MW, $7 million microgrid 
system at Kings Contrivance, and a 3 MW, $9.2 million system at Edmonson Village. BGE proposed to recover costs 
through a monthly surcharge on its 1.25 million electricity customers – $0.04 per residential customer per month 
in the first year and $0.13 per month in the second year, continuing until the microgrid generation assets fully 
depreciated.11

Resilience Considerations
Resilience was repeatedly identified as a benefit of the proposed microgrids, but neither BGE nor the PSC offered 
a definition of resilience. BGE and the PSC frequently referred to the value of maintaining power in the microgrid 
footprint during interruptions in the distribution system. BGE identified “avoided customer interruption” as a 
benefit from community microgrids but did not attempt to calculate its value (Maryland PSC, 2016, pp. 8–9). 
BGE argued that any resilience benefits of the microgrid would extend to non-microgrid customers throughout 
the service territory because local residents could travel to use microgrid-supported services during a power 
interruption. 

The Maryland PSC questioned many of the resilience benefits that BGE claimed the microgrids would provide to 
surrounding communities. PSC staff argued that conditions underlying major interruption events could prevent 
ratepayers from traveling to the microgrid area, which would diminish the microgrid’s value during a power 
interruption. Furthermore, PSC staff observed that the microgrids might not have sufficient capacity to support 
the sudden influx of demand. The staff also noted that critical services such as hospitals, police stations, and 
fire department buildings already had emergency backup power systems, which diminished the benefits that a 
microgrid could offer.  Finally, the staff took issue with the generation plan, which relied on natural gas and did not 
include renewable generation or storage options. The staff pointed out that the lack of fuel diversity would erode 
the resilience objectives.

Other Considerations
BGE argued that, in addition to resilience benefits, the projects would serve the public interest by a) improving 
power quality, system balancing, and voltage regulation; b) reducing peak demand; c) participating in the PJM 
market12; and d) reducing system upgrade costs (BGE, 2015).

Although the PSC acknowledged these benefits, it raised concerns about the generators’ ability to participate in 
the PJM market. The staff also noted that BGE had failed to integrate “forward-looking generation and storage 
concepts to test whether these elements could work in Maryland and be replicated in future microgrid projects.”  
Consequently, the PSC did not find a clear benefit to all ratepayers that was sufficient enough to justify recovering 
costs via a mandatory surcharge. 

11	   �See https://www.bge.com/AboutUs/Pages/default.aspx. 

12	   �The microgrid could capture additional revenue streams by bidding into PJM’s energy, capacity, and ancillary service markets.

https://www.bge.com/AboutUs/Pages/default.aspx
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3.2.  Commonwealth Edison
	     Illinois Commerce Commission: Docket 17-0331

Summary
On July 28, 2017, Commonwealth Edison (ComEd) filed a proposal for a two-phase microgrid project in the 
Bronzeville neighborhood of Chicago with 7.75 MW generating capacity and an unspecified amount of energy 
storage. The Illinois Commerce Commission (ICC) approved the proposal in an order issued on February 28, 2018 
(ICC, 2018). The microgrid will serve customers that provide critical public services, including the Chicago Police 
Department headquarters. A value of resilience was not quantified during the proceeding, but ComEd did propose 
resilience metrics that it will validate and record during the course of the project. ComEd plans to use these 
metrics to learn about the “impact of increased resiliency on economic development,” among other benefits (ICC, 
2018, p. 3). The information contained in this section is drawn from the ICC order dated February 28, 2018, unless 
otherwise noted.

Technology and costs
The 10-year project (starting in 2019) consists of two phases:

1.	 Phase I will cover 10 city blocks serving 490 customers with 2.5 MW load at a total cost of $12.6 million. Phase 
I will be supported by a $4 million DOE SHINES13 grant, which requires a focus on integrating renewable energy 
sources and energy storage into the microgrid. Phase I will include at least 0.75 MW of solar PV and 0.5 MW 
of battery storage with a 4-hour duration (equivalent to 2 MWh). ComEd may also integrate 3 MW of existing 
mobile diesel generators for testing purposes (ComEd, 2017).

2.	 In Phase II, the project will expand to include an additional three blocks, 570 customers, 4.5 MW of load, and 
7 MW of “controllable” generation resources (ComEd, 2017).14 The microgrid will also be able to connect to 
and coordinate with the existing nearby Illinois Institute of Technology microgrid. Research and testing of 
appropriate microgrid control technology will be supported by a $1.2 million DOE research and development 
grant (ComEd 2017; ICC, 2018). ComEd estimates that Phase II will cost $17 million (ComEd, 2017). 

The microgrid investment costs will be recovered through a surcharge on all 3.9 million ComEd ratepayers’ bills. 
The surcharge will be approximately $0.11 per month for the 10-year project duration.

Resilience Considerations
ComEd defined resilience as “the ability to prepare for and mitigate major extreme events and disasters...also 
the capacity of individuals, institutions, businesses, and systems to sustain and recover from chronic stresses and 
acute disturbances” (ICC, 2018, p. 22).15 ComEd stated that the microgrid would serve as a “resilient oasis” for the 
local community during power interruptions (ICC, 2018, p. 22). However, the value of resilience was not quantified 
by ComEd or by ICC staff, nor did it directly inform the ICC’s decision.16 

ComEd did propose using the microgrid pilot to validate resilience metrics that will serve as the foundation for 
a future resilience valuation methodology. The company suggested 28 metrics based on existing industry best 
practices and recent academic literature. The metrics will measure energy system resilience and performance,  

13	   �Sustainable and Holistic Integration of Energy Storage and Solar PV.

14	   �As noted in the ICC ruling: “ComEd explains the permanent DER installed in Phase II must be controllable–they must be capable of supplying the entire load of the Project 
area in an islanding event, the timing of which may not align with solar PV generation. ComEd notes parties have stated that solar PV can become controllable by being 
paired with battery storage. While that may be true, ComEd anticipates that obtaining sufficient solar PV and battery storage to supply the entire Project area will be 
significantly more expensive than other DER options.” (ICC, 2018: 42) 

15	   �Other stakeholders submitted nuanced or alternative definitions of resilience. The Illinois Attorney General’s Office, for example, defined resilience as “rapid recovery of a 
power source” (ICC, 2018, p. 75).

16	   �Although ComEd and ICC staff did not attempt to quantify resilience, an intervenor representing the Environmental Law and Policy Center applied the LBNL Interruption 
Cost Estimate (ICE) tool to calculate that a 43-minute reduction in annual system “down time” would deliver a “reliability benefit” of between $82,000 and $112,000 per 
year (ICC, 2018, p. 66). A more detailed discussion of the ICE calculator methodology is included in Section 4.2.1 of this report. 
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community resilience, and critical infrastructure resilience. The company will issue its first metrics-driven report 
on the status of the microgrid project in 2020.17

The Illinois Attorney General’s Office and other intervenors raised a range of concerns about the project, some 
of which questioned the resilience benefits (ICC, 2018). Examples of the intervenors’ discussion points related to 
resilience included:

	 •	  �There is no need for the project because the area already benefits from reliable service. 

	 •	  �ComEd should be able to estimate or predict the benefits of “grid security and reliability” based on existing 
knowledge; since they did not, it is unclear if the benefits outweigh the project costs (ICC, 2018, p. 43). 

	 •	  �The Chicago Police Department headquarters already has backup power capability, limiting the project’s 
added value as backup to a critical service. 

	 •	  �The microgrid area does not include significant public or critical services beyond the Chicago Police 
Department headquarters.

Other Considerations
ComEd argued that the project would support electricity delivery services and provide lessons regarding the value 
and use of microgrids. It also argued that the microgrid could provide the utility with experience in using DERs 
to support the distribution grid. The ICC concluded that a quantitative cost–benefit analysis was not necessary 
because the microgrid project provides lessons that are valuable for all customers and sufficient to justify cost 
recovery from ratepayers. 

The ICC’s decision to forgo a cost-benefit analysis was met with resistance from the Illinois Attorney General’s 
Office, which argued that the project will provide limited learning opportunities. The AG’s office specifically noted: 

	 •	  �It is unknown if and when islanding will occur, so the learning opportunities will be limited by circumstance.  

	 •	  �The project will give preferential treatment to the 1,060 microgrid customers, violating the Illinois Public 
Utilities Act, which states that public utilities may not grant preference or advantage to any customer, nor 
establish or maintain an “unreasonable” difference in services or facilities between localities (ICC, 2018, p. 
37). 

	 •	  �The project violates the Illinois Public Utilities Act least-cost requirement (Section 8-401) because it is not 
the least expensive way to achieve reliability (ICC, 2018, p. 39).18 

3.3.  Potomac Electric Power Company
         Maryland Public Service Commission: Case No. 9361

Summary
On September 25, 2017, Potomac Electric Power Company (Pepco) filed a proposal for two community microgrids—
one in Largo, Md., and one in Rockville, Md. Pepco filed an updated proposal on February 15, 2018, proposing 
6.78 MW of generating capacity with 1.6 MW of storage for Largo, and 7.46 MW of generating capacity with 
0.25 MW of storage for Rockville, Md. Both proposals were filed as a condition of Pepco’s 2016 merger with 
Exelon Corporation (Maryland PSC, 2015). On September 17, 2018, the Maryland PSC denied Pepco’s proposal,  

17	   �In response to the Maryland PSC’s decision in the BGE case, ComEd noted the importance of developing metrics “that ComEd, the Commission, the industry, and other 
stakeholders can apply when considering future distribution system advancements, distributed generation, and microgrid projects” (ComEd, 2017, p. 13). According to 
the Commission, “these metrics include 28 energy system resilience metrics, 15 community resilience metrics, and 13 critical infrastructure resilience metrics” (ICC, 2018, 
p. 68). The ICC order required ComEd to use these metrics throughout the pilot program and to issue a metric-driven report in 2020.  The metrics can be found in ComEd 
Exhibit 3.01, attached to ComEd’s testimony filed July 28, 2017 (https://www.icc.illinois.gov/docket/files.aspx?no=17-0331&docId=255296). 

18	   �The Illinois Attorney General (AG) observed that ComEd was already “in the midst of extensive modernization of its distribution system” in order to “underground 
residential cable and mainline cable system replacement and repair, storm hardening, distribution automation, and cyber-secure communications.” The AG noted that this 
effort “improves reliability and resilience throughout the distribution grid without the need to locate new energy resources, paid for by the public and utilized only in the 
most extreme circumstances to serve a very small subset of customers.” The AG also argued that “ComEd provided no analysis of the cost or feasibility of any alternative 
or less costly methods to achieve its goals,” and therefore concluded “that a project that provides reliability and resiliency at double the cost of distribution infrastructure 
modernization and duplicates existing energy resources is not least-cost.” (IC, 2018, p. 39-40)

https://www.icc.illinois.gov/docket/files.aspx?no=17-0331&docId=255296


    14

citing concerns over the impact on residential rates, a lack of cost-sharing by the beneficiary counties, Pepco’s 
failure to apply to various grant programs, and Pepco’s inability to quantify the community and distribution system 
resilience benefits of the program. 

Technology and costs
1.	 The Largo microgrid would have covered the County Administration Building, a pharmacy, a gas station, a 

grocery store, the Prince George’s Regional Medical Center, and a separate medical facility. The microgrid 
would have consisted of 1.175 MW of PV and 5.6 MW of natural gas generating capacity, along with 1.6 MW 
of battery storage with 2-hour duration (equivalent to 3.2 MWh). The entire system was estimated to cost 
$26.2 million.

2.	 The Rockville microgrid would have covered grocery stores, gas stations, a pharmacy, a fire station, and local 
government buildings. The microgrid would have consisted of 0.86 MW of PV and 6.6 MW of natural gas 
generating capacity with 0.25 MW of battery storage with 2-hour duration (equivalent to 0.5 MWh). The entire 
system was estimated to cost $37.2 million.

Pepco proposed to recover the costs for both microgrids from all Maryland Pepco customers through distribution 
rates, with a $0.36 monthly bill increase on a levelized basis for the typical residential customer. The rate recovery 
would have taken place over a 20-year period, based on the microgrids’ minimum operational lifetime (Pepco, 
2018a).

Resilience Considerations
According to Pepco, resilience would have been the primary benefit of the microgrid pilots. Pepco defined resilience 
as “the ability of the distribution system to withstand and recover from a destructive event” (Pepco, 2017, p. 11). 
Commission staff adopted the same definition in its analysis (Staff of the Maryland PSC, 2018, p. 3). Pepco did not 
calculate a value of community resilience19 in its proposal, citing the lack of a standardized industry methodology 
for determining community benefits.20 However, the company did use the ICE Calculator to estimate two benefits 
for customers connected to the microgrid—“outage avoidance benefits to microgrid participants” ($7.6 million) 
and “resiliency savings” ($8.3 million).  

Maryland PSC staff agreed that the ICE calculator was an “appropriate tool to evaluate [the] microgrid proposals” 
because it is “accepted and used by electric reliability planners at utilities and government organizations across the 
nation for estimating interruption costs to customers, or societal costs, associated with reliability improvements 
in the United States.” (Staff of the Maryland PSC, 2018a, p. 7).  Because both of Pepco’s savings estimations were 
computed with the ICE Calculator, the staff found that they represented only reliability benefits that “exclusively 
apply to the microgrid participants, not the thousands of customers who may indirectly benefit from the microgrids” 
(Staff of the Maryland PSC, 2018a). In other words, the staff found that neither value represented the full value of 
resilience, despite the name “resiliency savings.” The staff opted to use the higher “resiliency savings” estimate in 
its cost-benefit analysis only because that estimate provided independent values for each microgrid, not because 
it believed that the figure more accurately estimated the value of resilience. 

Pepco defended its inability to quantify community resilience benefits, likening the microgrids to an insurance 
policy. “Like other forms of insurance,” Pepco wrote, “it has minimal value when not needed, but extraordinary 
value when used that greatly exceeds its cost.” Pepco went on to suggest that the microgrids “represent a public 
good,” the value of which is difficult to calculate and “nearly impossible to assign in terms of cost allocation” 
(Pepco, 2018b, p. 9). 

In its September 17 order, the Maryland PSC denied Pepco’s proposal, in part, because of its failure to quantify 
community resilience benefits. The PSC noted that Pepco had proposed to use the program to collect data that  

19	   �Community resilience benefits refer to the benefits that accrue to customers that are not directly connected to the microgrid, such as access to services located within the 
area served by the microgird.  

20	   �“The Company is unaware of an existing methodology for appropriately quantifying the financial benefits associated with microgrid availability during [outages]” (Pepco, 
2017, p. 55)
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would later facilitate quantifying these benefits. However, the PSC determined that it could not speculate on their 
value, especially given the Commission staff’s unfavorable cost-benefit analysis.

Other Considerations
The PSC staff concluded that the costs for both projects outweighed their quantifiable benefits, even after 
accounting for the “resiliency savings” estimate.21 The Commission staff further found that microgrid customers 
would disproportionately benefit from the project, and that customers who are closer to the microgrid area would 
experience greater benefits than those located farther away (Staff of the Maryland PSC, 2018a). 

The PSC did reiterate its position that “public purpose microgrids have the potential to serve the community by 
providing electricity for public purposes during periods of extended grid outages” (Maryland PSC Order 88836, 
2018, p. 24). It went on to clarify, however, that the costs of microgrids should not be borne solely by the ratepayers, 
but instead should be financed, at least in part, “through a combination of Participant contributions, government 
grant programs, and funding arrangements with the Counties or private market participants” (Maryland PSC, 2018, 
p. 24).  

3.4  Findings regarding regulatory proceedings

The proceedings summarized reveal several trends in regulatory decision making related to ratepayer-funded 
microgrids: 

	 •	  �A limited track record with mixed results. Microgrid investment proposals have met with mixed success in 
regulatory proceedings thus far. In two out of three of the cases, the commissions rejected utility proposals. 
In Maryland, PSC staff conducted cost-benefit analyses for both BGE and Pepco’s proposed microgrid 
investments and concluded that the investments could not be justified based on the quantified benefits.  
In the ComEd Bronzeville case, the ICC determined that unquantified community learning benefits were 
sufficient to make a cost-benefit analysis unnecessary, although intervenors made arguments that the 
microgrid would not be cost-effective. 

	 •	  �Resilience is not quantified or valued in a way that impacts decision making. Resilience is consistently 
identified as an important but intangible benefit of microgrid development. Resilience is unquantified in the 
formal regulatory proceedings surveyed. 

	 •	  �Ratepayer-funded microgrids raise questions of equity. Ratepayer equity proved to be an important 
consideration for all three proposals. In Maryland, the PSC determined that ratepayers closer to microgrid 
sites benefit disproportionately when compared to those further away. Consequently, the PSC found that 
rate charges spread equally across all ratepayers would not be appropriate, especially in the absence of cost-
sharing by the beneficiary counties. Conversely, the Illinois Commerce Commission found that community 
learning benefits were shared equally by all ratepayers in the region. As a result, the ICC approved ComEd’s 
proposal without a formal cost-benefit analysis. These results highlight uncertainties as to whether the 
resilience provided by DER investments represents a public or private good.

	 •	  �Commissions take the resource mix of proposed microgrids into account. Both the ICC and the Maryland 
PSC valued the integration of DERs over conventional resources. In the BGE case, the Maryland PSC denied 
the proposal in part because of its failure to incorporate renewables and battery storage into the resource 
mix. The Maryland PSC later praised Pepco’s proposal for its efforts to incorporate those resources. The ICC 
approved ComEd’s proposal, in part, because its resource mix—which included both solar and natural gas—
contributed to the unquantified community learning benefits.

21	   �Quantifiable benefits included only ICE calculated values for microgrid participants; it did not include community resilience benefits.
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4.  Recent approaches to valuing resilience for DERs
The value of resilience has played a limited and largely qualitative role in the regulatory proceedings reviewed in 
Section 3. As discussed in Section 2, however, a number of states, cities, and institutions are actively exploring the 
use of DERs for resilience outside of regulatory venues. This section reviews approaches to the value of resilience 
outside of formal regulatory proceedings. The analytical processes used in states, cities, and institutions to identify 
cases where the value of resilience has been calculated and applied to resilient DERs. In jurisdictions where a 
value of resilience was analyzed, the extent to which the analytical method could be applied (or adapted) within 
the regulatory context was reviewed. The criteria used to review the applicability of the methods for regulators 
include:

1.	 Power interruption duration. As discussed in Section 2.2, interruption duration is one of the concepts 
distinguishing resilience from reliability. Some methods do not include a time element, or assume that the 
relationship between power interruption duration and cost is linear. In reality, power interruption costs may 
increase exponentially under the longer-term interruptions contemplated by resilience. Although many of the 
direct costs of power interruptions are incurred by consumers upfront, the indirect costs of an interruption on 
the wider economy can grow and spread over time.  

2.	 Scalability. Regulators may need to evaluate resilience investments at multiple geographic scales, ranging from 
a specific critical location to an entire utility service territory—or they may need to evaluate the benefits of a 
statewide policy. Some valuation methods are flexibly scalable to different levels of analysis; other methods 
are designed with a specific scale in mind and are difficult to adapt for other purposes. A related issue is 
whether the methods contemplate direct or indirect impacts. A method that considers only the direct costs 
and benefits to a specific location may not sufficiently reflect the spillover effects that a longer-term power 
interruption can have on society.

3.	 Ease of use. Regulators need to make decisions in a transparent manner—often with limited budgets and 
within tight timelines. These parameters place a premium on replicable methods that employ low cost tools, 
readily available datasets, and accessible models. Some of the resilience valuation methods are comparatively 
simple, whereas others are data intensive, require highly customized solutions that take months to develop, 
and/or are difficult for stakeholders to access or understand. 

4.	 Scope of outputs. Regulators may need to take different values into account in their decision making, depending 
upon factors such as state law, regulatory precedent, or standard practice. Some states may consider only the 
costs and benefits experienced by the utility system, whereas other states may consider the costs and benefits 
experienced by society as a whole (Woolf et al., 2017).22 The different valuation methods produce different 
outputs. Some methods generate values based on indicators (e.g., employment) that may or may not be 
germane to state regulators, depending on the costs tests they use. 

Section 4.1 briefly summarizes the different approaches to valuing avoided power interruptions that underpin 
value of resilience calculations. Section 4.2 presents case studies of the different methods that have been 
applied to calculating the value of resilience for DERs, including the context in which the method was used, the 
outputs generated, and the manner in which the outputs were incorporated into broader analyses. The case 
studies also situate the method within the broader valuation approach they employ. The case studies do not seek 
to comprehensively compare different economic valuation approaches; the objective of the case studies is to 
compare specific use cases through the lens of the four criteria discussed previously. The case studies also do not 
comment on whether the methods used were a good “fit” for their intended purpose; rather, they explore the 
extent to which methods used for non-regulatory purposes could be adapted to the regulatory context. 

22	   �New York State Department of Public Service (2015) staff, for example, categorized the costs and benefits of the Reforming the Energy Vision proceeding according to 
whether they were relevant to the Rate Impact Measure (RIM), Utility Cost Test (UCT), or Societal Cost Test (SCT). Under the heading of “Reliability/Resiliency” benefits, 
staff categorized Net Avoided Restoration Costs as relevant to RIM, UCT, and SCT and Net Avoided Outage Costs as relevant only to the SCT. 
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4.1.  Avoided power interruption valuation methods

There are numerous approaches for valuing nonmarket goods and resources (e.g., Champ et al., 2013). There 
is also extensive existing literature spanning several decades that describes and compares methods for valuing 
power interruption costs (Burns & Gross, 1990; Larsen, 2016); several recent papers focus specifically on longer-
duration power interruptions (Roark, 2018; Sanstad, 2016). This paper does not attempt to revisit the literature on 
power interruption valuation in depth. Instead, this section provides short descriptions of the different methods 
to ground the terminology used in the Section 4.2 case studies.23 This section broadly categorizes the different 
methods by whether they are bottom-up approaches, which assess the value of resilience based on customer 
preferences or behavior; or economy-wide models, which measure how power interruptions affects economic 
performance. 

Bottom-up approaches.24 Bottom-up approaches can be divided into stated or revealed preference methods.

	 •	  �Stated preference methods use surveys or interviews to directly ask customers about their intended 
(or actual) behavior (Brown, 2003). Contingent valuation is a type of stated preference approach that is 
commonly used to elicit values for non-market goods; for example, the value to customers of avoided power 
interruptions (Woo & Pupp, 1992).25 These surveys often ask respondents to give a hypothetical willingness-
to-pay for better service or a willingness-to-accept26 a payment for less reliable service (Caves et al., 1990; 
Schröder & Kuckshinrichs, 2015). For example, utility customers may be asked how much they would pay 
to avoid a power interruption or to be guaranteed a higher level of supply security. Stated preference 
approaches also include methods such as conjoint analysis27 and discrete choice experiments (DCE), which 
attempt to elicit value by asking respondents to choose between different options (EPRI, 2017).28 The ICE 
Calculator, developed by Lawrence Berkeley National Laboratory, is based on data gathered using the 
contingent valuation method (Section 4.2.1). 

	 •	  �Revealed preference methods29 use real-world data (e.g., purchasing behavior) to infer a valuation of 
non-market goods (Boyle, 2003). Defensive behavior and damage cost methods are examples of revealed 
preference approaches that have been used to establish the value of avoiding power interruptions. Defensive 
behavior methods identify the amount that customers have paid to avoid the negative consequences of a 
power interruption. The costs of purchasing and maintaining a back-up diesel generator, for example, could 
represent the value of avoiding power interruptions according to the defensive behavior method. Damage 
cost methods calculate the actual costs that may be experienced by different groups (e.g., customers) during 
a power interruption (Dickie, 2003).30 The Federal Emergency Management Agency (FEMA) integrates the 
damage costs of increased injuries and lives lost from degraded critical services during power interruptions 
into its Benefit-Cost Analysis (BCA) tool (Section 4.2.2). 

23	   �The paper highlights where alternative terminology is used within recent U.S. literature for the same methods or categories. The paper does not highlight alternative 
terminology or categorizations used in older studies from the U.S. (e.g., Burns & Gross, 1990) or from studies outside the U.S. (e.g., Ajodhia, 2006; Schröder & 
Kuckshinrichs, 2015).

24	   �Bottom-up approaches are also referred to as microeconomic approaches (Roark, 2018).

25	   �Avoided power interruption costs are also referred to as Customer Interruption Costs; i.e., “the economic cost that customers incur when they experience an interruption 
in electricity service.” It is also referred to as the value of lost load (Sullivan et al., 2018, p. 1). 

26	   �Willingness-to-accept would require questions about how much money customers would need to be offered to accept reduced security of supply. In theory, willingness-
to-pay and willingness-to-accept should be equivalent or at least relatively close to one another (Shogren et al., 1994). In practice, willingness-to-accept values tend to be 
significantly higher than willingness-to-pay (Horowitz & McConnell, 2002).

27	   �Conjoint analysis is a method of determining how consumers value certain attributes when choosing between similar products or services; in other words, it shows “what 
a consumer really wants in a product or service.” A more thorough discussion of conjoint analysis can be found in Green and Wind (1975).

28	   �The precise definitions and the differences between conjoint analysis and DCE have been the subject of debate in the literature (see, e.g., Louviere et al., 2010)

29	   �Revealed preference methods are also referred to as “market-based methods” (Sullivan et al., 2018) because value can be assessed based on the cost of purchased goods 
and services.

30	   �There are a broad range of approaches to calculating damage costs. Some approaches project hypothetical future costs, whereas others attempt to assess actual damage 
costs after the fact. Ex post approaches include conducting case studies of actual blackouts or analyzing insurance claims data post-interruption. A discussion on the pros 
and cons of these different approaches can be found in other reports (Sullivan et al., 2018; Mills and Jones, 2016; LEI, 2013). 
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Economy-wide approaches. Economy-wide approaches31 analyze the effects of power interruptions on regional 
economies using indicators such as economic output and employment. Some economy-wide approaches rely on 
models that reflect the financial flows and transfers within a geographic area. These models include, for example, 
input-output models such as IMPLAN and REAcct (Vargas & Ehlen, 2013), computational general equilibrium (CGE) 
models (Sue Wing & Rose, 2018), and macro-econometric methods (Greenberg et al., 2007).32 There are also 
economy-wide approaches that do not rely on complex models. Production function approaches,33 for example, 
calculate the relationship between indicators such as energy consumption and gross domestic product (GDP) (de 
Nooij et al., 2007; Leahy & Tol, 2011).

Interviews and a literature survey were conducted to identify locations where the methods described were used 
to calculate a value of resilience for DER resources in the United States. These examples are highlighted in light 
blue and correspond to one of the case studies in Section 4.2. It is noteworthy that efforts to quantify the value 
of resilient DER have been concentrated in New York. The light grey cells indicate that the method has been used 
to calculate power interruption costs in the United States,34 but has not been applied to analyze resilient DER. 
The light grey examples were not included as case studies in this paper, but they are summarized in other studies 
(Greenberg et al., 2007; Jeffers et al., 2016; LEI, 2013; Rose et al., 2007).

Figure 2. Methods used to calculate the value of avoided power interruptions and the value of 
resilient DER in different locations in the United States

31	   �These models are also collectively referred to as macroeconomic (EPRI, 2017), but Sanstad (2016) makes a case for why the term “economy-wide” may be a more 
appropriate characterization. Other authors group similar concepts as “regional economic modeling” (Sullivan et al., 2018).

32	   �LBNL summarizes and compares these different models in a recent study (Sanstad, 2016).

33	   �Also referred to as a “proxy” or “macroeconomic measures” methods (DOE, 2017)

34	   �The exception to this is DCE. Sullivan et al. (2018) identify instances where DCE has been used outside the U.S. (Belgium, Cyprus, Israel, and Sweden), but not in the U.S. 



    19

4.2.  Case studies

This Section provides detailed case studies of how the power interruption valuation methods described in Section 
4.1 have been used to calculate a value of resilience for DERs in the United States. Each case study includes: a) 
background and context for the study, b) the valuation method used, c) the outcomes of the analysis, and d) the 
method’s applicability to regulators, using the criteria described in Section 4. These case studies represent efforts 
to calculate the value of resilience as a benefit that can be compared against the costs of the DER investments–e.g., 
through a cost-benefit analysis. There are alternative approaches to evaluating investments in resilient DERs that 
do not require benefits to be quantified, such as cost effectiveness assessments. Cost effectiveness assessments 
compare the costs of different alternatives to achieve a single quantified (but not monetized) outcome—e.g., the 
costs of the different technologies that could be used to provide back-up power for a two-day power interruption. 
Cost effectiveness assessments can be used when “social benefits are difficult to monetize (Boardman et al., 2001, 
p. 437).”  

Table 2 contains an overview of the case studies and a summary of how the methods relate to the criteria introduced 
at the beginning of Section 4. The criteria summary is color coded in the following manner:

GREEN: The method meets the criteria; i.e., the method can be used to analyze long-term power interruptions, 
it is readily scalable to different geographic levels, it is relatively easy to use, or its outputs can inform regulatory 
decisions related to resilience investments. 

RED: The method does not meet the criteria; i.e., the method cannot readily analyze long-term interruption 
durations, it cannot be applied to different geographic scales, it is difficult or costly to use, or its outputs are less 
relevant to regulatory decision making.

YELLOW: There are pros and cons in terms of how the method relates to the criteria.

It is important to note that the color coding is illustrative and is not intended as a definitive judgment on the 
fundamental merits of the different methods. The methods are useful for different purposes and in different 
contexts. Regulators should consider which methods are applicable for the unique contexts of their states.
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Table 2. Detailed pros and cons of selected resilience valuation methodologies

Case Study Method Tool Duration Scalability Ease of Use Scope of 
Outputs

Solar + storage 
for critical 
infrastructure 
(Section 4.2.1)

Stated 
preference: 
Contingent 
valuation

ICE 
Calculator

• �U.S. data sets are 
for interruption 
durations < 1 day

• �Limited customer 
experience with 
black sky events

Scalable from 
facility to 
national level

• �ICE calculator 
available online

•� �New surveys 
are resource 
intensive

• �Well established 
in regulation

• �Does not 
consider 
spillover effects

The value of 
microgrids for 
critical services 
(Section 4.2.2)

Revealed 
preference:
Damage cost

IEc Model 
(FEMA BCA 
tool)

• �Can account for 
longer duration 
interruptions

• �Difficult to 
account for non-
linear effects of 
long-term power 
interruptions

Scalable to 
different 
geographic 
levels

• �Depends on 
damage metric 
used

• �FEMA BCA tool 
available online

• �Depends on 
damage metric

• �Value of critical 
services may not 
be in-scope for 
regulators

Microgrids for 
community 
economic 
security (Section 
4.2.3)

Input-output 
analysis

IMPLAN • �Can analyze 
long-term 
disruptions

•� �Static models do 
not fully capture 
long-term 
shocks

• �Effective 
for regional 
analysis

• �Difficult 
to scale to 
facility level

• �IMPLAN 
commercially 
available

• �Other 
economy-wide 
approaches are 
more complex

Economic 
indicators may not 
be in regulatory 
scope

Microgrids for 
military bases 
(Section 4.2.4)

Revealed 
preference: 
Defensive 
behavior

Generator 
cost 
calculation

Most resilience 
measures are not 
purchased for long 
duration power 
interruptions

Difficult to 
scale to larger 
geographies

Market data is 
available

• �Directly related 
to energy 
investment

• �Does not 
consider 
spillover effects
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4.2.1.  Solar and storage for critical infrastructure
       ICE Calculator: Stated preference – Contingent valuation

Background
In October 2012, Superstorm Sandy made landfall near Atlantic City, N.J., causing widespread damage along 
significant portions of the East Coast. In New York City alone, Sandy caused an estimated $19 billion in damages 
and left 1.5 million customers without power (City of New York, 2013; New York City Office of the Mayor, 2012). 
During the decade prior to the storm, New York City had experienced a dramatic increase in installed rooftop solar 
PV. However, almost none of the installed PV systems were configured to provide back-up power in the event of a 
power interruption (Case, 2017b).35  Following Superstorm Sandy, the City University of New York (CUNY) launched 
the Smart Distributed Generation (DG) Hub “to develop a strategic pathway to a more resilient distributed energy 
system.”36 A key focus of the Smart DG Hub was the development of a resilient solar roadmap, which outlined 
strategies to support the installation of solar and storage systems citywide (Case et al., 2017b). CUNY partnered 
with the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) to conduct a feasibility study 
of solar and storage systems installed on critical infrastructure in New York City. NREL and CUNY analyzed the 
technical and economic viability of PV and battery systems on three critical infrastructure sites in New York City.37 
These included a coastal school that serves as a storm shelter, a fire station, and a senior center that provides 
cooling services during heat emergencies. NREL worked with city agencies to identify the critical loads in each 
building and then used the REOpt model38 to find the combinations of PV, batteries, and diesel generators that 
would supply the critical load at lowest cost under different scenarios. The results of this study indicated that 
the “inclusion of the cost of power interruptions can have a large impact on the economic viability of a resiliency 
solution” (Anderson et al., 2016). 

Method Used
NREL integrated a value of resilience into its economic analysis of the three sites. NREL used the Interruption 
Cost Estimate (ICE) Calculator tool,39 developed by LBNL. The ICE Calculator estimates the avoided cost of power 
interruptions for specific customer types in different parts of the country and for different durations (i.e., the 
“customer damage function” or CDF40). The CDF values are developed from a meta-analysis of 34 different survey 
datasets collected by 10 utilities across the country from 1989-2012 (Sullivan et al., 2009; Sullivan et al., 2015).41 
The surveys employed a contingent valuation approach to assess customer willingness-to-pay for avoiding power 
interruptions as it relates to grid reliability. 

Outcomes
A “value of resiliency” was calculated for each of the three cases on a $/hour/year basis using the ICE calculator. 
Annual short and long-duration power interruption costs for each facility were then calculated by multiplying the 
$/hour/year value of resilience by the power interruption duration, assuming a 2-hour short duration and 22-
hour long duration interruption for buildings located on the network grid (i.e. the fire station) and a 7-hour short 
duration and 50-hour long duration interruption for buildings on the radial grid (i.e., the school and the senior 
center (Anderson et al., 2016) (Table 3)).42 These values were then incorporated into a cost-benefit analysis of PV 
and battery investments as an additional quantitative benefit. 

35	   �As described in Mullendore & Milford (2015): “the majority of PV systems currently installed are grid-tied…for safety reasons, these systems are configured to shut down 
when the grid goes down; if they did not, they could send power back up grid distribution lines undergoing repair, endangering utility line workers. (p. 3)”

36	   �See https://nysolarmap.com/solarplusstorage/.

37	   �A similar approach has been used to analyze facilities in Anaheim, CA (NREL, 2018) and NREL and CUNY have since built on this analysis to explore how the insurance 
industry might monetize the value of resilience (Anderson et al., 2018).

38	   �REopt is “NREL’s software modeling platform for energy system integration and optimization.” See Simpkins et al. (2014).

39	   �See https://icecalculator.com/home. 

40	   �An in-depth discussion of CDF can be found in Sullivan et al. (2009).

41	   �As described in Sullivan et al. (2015: iv), “Once the datasets from the various studies were combined, a two-part regression model was used to estimate customer damage 
functions that can be generally applied to calculate customer interruption costs per event by season, time of day, day of week, and geographical regions within the U.S. for 
industrial, commercial, and residential customers.”

42	   �Power interruption durations in this study were taken from average annual power interruption durations for radial and network customers in New York City. The school 
shelter and fire stations were connected to a radial system, whereas the senior center was connected to a network system. This explains the difference in power 
interruption durations. A discussion of the difference between the two systems can be found in footnote 8 in Anderson et al. (2016).

https://nysolarmap.com/solarplusstorage/
https://icecalculator.com/home
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Table 3. Value of Resiliency for New York City Facilities

Site
Value of Resiliency 

Provided 
($/hour/year)

Annual Cost of Short Duration 
Power interruption 

(7 hours; 2 hours for Fire Station)

Annual Cost of  
Long Duration Power 

interruption 
(51 hours; 22 hours for Fire Station)

School shelter $69 $500 $33,515

Fire station $917 $11,824 $20,071

Senior center $32 $232 $11,632

Adapted from Anderson et al. (2016).

Evaluation
Power Interruption Duration. The ICE Calculator does not currently reflect “resilience-scale” power interruption 
durations. The ICE Calculator outputs are based on surveys of the willingness-to-pay to avoid power interruptions 
of up to 16 hours in length.43 This duration is too short for resilience analysis. As recommended in a recent NARUC 
report, resilience to “black sky” events could entail power interruptions of 25 days or more (Stockton, 2014). New 
contingent valuation surveys could be designed to ask customers to contemplate longer-term duration interruptions 
(Caves et al., 1990; Schröder & Kuckshinrichs, 2015). However, most customers in the United States—apart from 
Puerto Rico and the U.S. Virgin Islands—have not experienced long-term interruptions on which they could base 
their value assessments and may have trouble accurately assessing their willingness-to-pay to avoid such scenarios 
(Sullivan et al., 2018; Atkinson et al., 2012). 

Scalability. The ICE Calculator—and the results from contingent valuation surveys more generally—can be used to 
support analysis for an individual facility or for larger geographic areas.44 Contingent valuation approaches are also 
particularly useful for residential customers, for which other valuation techniques fall short (Larsen et al., 2018). 

Ease of Use. The ICE Calculator is a powerful and comparatively easy-to-use model. Regulatory staff have employed 
the ICE Calculator both in the microgrid proceedings discussed in Section 2 and in cases considering power 
interruptions more broadly (LaCommare et al., 2017). However, the cost of designing and implementing a new 
survey (e.g., to assess interruptions longer than 24 hours) is resource intensive and “can cost $1 million or more 
for a large service territory and take more than a year to complete (Roark, 2018).” Designing a survey that elicits 
useful responses is also difficult; survey question structure can influence respondents’ answers and some surveys 
suffer from asking the “wrong” questions (Bateman, 2011; Brown, 2003; de Nooij et al., 2007). 

Scope of Outputs. Willingness-to-pay outputs can be used in a broad range of regulatory contexts. Contingent 
valuation approaches typically address only direct costs to customers since designing a survey to assess indirect 
costs would require complex design that could be confusing for respondents (Sullivan et al., 2018; Atkinson, 2012). 
LBNL comments that the ICE calculator estimates “are not appropriate for resiliency planning… For resiliency 
considerations that involve planning for long duration power interruptions of 24 hours or more, the nature of costs 
change and the indirect, spillover effects to the greater economy must be considered (Sullivan et al. (2015: xiv).”

43	   �“This meta-study focuses on the direct costs that customers experience as a result of relatively short power interruptions of up to 24 hours at most. In fact, the final 
models and results that are presented...truncate the estimates at 16 hours, due to the relatively few number of observations beyond 12 hours (scenarios of more than 12 
hours account for around 2% to 3% of observations for all customer classes).” (Sullivan et al., 2015, p. 17)

44	   �It is also possible to scale the results from contingent valuation studies up to apply to larger geographies and this has been done in studies outside of the United States.  
For example, the State of Victoria in Australia scaled results from contingent valuation surveys to determine a state level value of lost load (CRA International, 2008). 
Results from Victoria were then used to develop a national value of lost load for Australia (Hoch & James, 2011).  
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4.2.2.  The value of microgrids for critical services
      FEMA BCA: Revealed preference - Damage cost

Background
The NY Prize Community Grid Competition (NY Prize), developed and conducted by the New York State Energy 
Research and Development Authority (NYSERDA) in partnership with the New York Governor’s Office of Storm 
Recovery, promotes designing and building community microgrids to improve local electrical distribution system 
performance and resilience. In Stage 1 of the NY Prize, funding for 83 communities was provided to conduct 
engineering assessments to evaluate the feasibility of microgrid implementation.45 Many of the proposed microgrids 
aimed to improve resilience against the effects of severe weather events (BNL, 2017). All of the feasibility studies 
included a cost-benefit analysis using a model developed by Industrial Economics, Inc. (IEc), which draws on several 
different valuation methods (BNL, 2017).

Of the 83 communities, 11 were selected to move onto Stage 2 of the NY Prize and received additional funds to 
conduct comprehensive engineering, financial and commercial assessments of the proposed microgrids. NYSERDA 
will provide additional support for microgrid project implementation under Stage 3 of the program.  

This report examines the Buffalo Niagara Medical Campus microgrid proposal, which was selected for support 
under Stage 2 of NY Prize committee for Stage 2 analysis. The proposed microgrid would cover nine health care, life 
science research, and education facilities on the Buffalo Niagara Medical Campus. The campus facilities include: 

	 •	  �The Roswell Park Cancer Institute, comprised of six buildings; 

	 •	  �Kaleida Health, which includes the Buffalo General Medical Center, Gates Vascular Institute, Buffalo Clinical 
and Translation Research Center, and Women & Children’s Hospital; 

	 •	  �The University at Buffalo School of Medicine; and 

	 •	  �Cleveland Biolabs

The proposal emphasized the importance of enabling the Roswell Park Cancer Institute and Kaleida Health 
facilities to maintain 100 percent service quality during extended interruptions. The microgrid would integrate 
both existing and new distributed generation assets at those facilities, including diesel generators, battery storage, 
and renewables. The proposal also suggests integrating larger generation assets in the future, as well as including 
the nearby Fruit Belt neighborhood in the microgrid. 

Analysis Method Used
The IEc model includes an estimate of the benefits for avoiding major power interruptions, which it breaks into two 
categories: the benefits of maintaining commercial and industrial (C&I) services and the benefits of maintaining 
critical services (IEc, 2016). The IEc model uses the ICE Calculator to quantify the C&I services component of the 
benefit calculation (see Section 4.2.1). To determine the benefit of maintaining critical services, the model uses 
the Federal Emergency Management Agency (FEMA) Benefit–Cost Analysis (BCA) approach, which incorporates 
a damage cost methodology (FEMA, 2011). FEMA developed this methodology in order to conduct cost-benefit 
analyses for its Hazard Mitigation Grant Program. The methodology uses location-specific information—such as the 
size of the population served and the power interruption duration at that location—as well as some standardized 
equations to estimate the costs of degraded fire, police, and emergency services (IEc, 2016).46 The costs associated 
with critical services are based on assumptions about the value of lives saved and injuries prevented.  

Outcomes
The IEc model estimated the 20-year net present value (NPV) of the microgrid’s capital expenditures at $35 million, 
with annualized operations and maintenance costs of $1.37 million and annualized fuel costs of $8.34 million. The  

45	   �See https://www.nyserda.ny.gov/All-Programs/Programs/NY-Prize/Opportunity-Zones-Map. 

46	   �The FEMA BCA also includes a version of a production function method to calculate reduced economic activity in the case of lost electric, water, or wastewater services.

https://www.nyserda.ny.gov/All-Programs/Programs/NY-Prize/Opportunity-Zones-Map
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model showed that there would need to be at least 7 hours of interruption each year for the microgrid’s benefits 
to exceed its costs. Benefits were calculated for a variety of categories (for example, “avoided emissions damages” 
and “reliability improvements”); this study focuses specifically on “Major Power Outage Benefits.” The 20-year NPV 
of these benefits, assuming just seven (7) hours of interruption annually, was estimated to be $22.4 million ($1.98 
million annualized).47 These benefits include the value of healthcare services that would otherwise have been 
diminished (calculated using the FEMA BCA methodology), as well as saved operating costs from diesel generators. 
The FEMA BCA portion of the analysis relied on several damage functions, which estimated the impacts of the 
interruption on survival probability, additional travel time to hospitals, patient waiting time, and cardiac arrest 
fatality rates. 

Evaluation
Interruption Duration. Damage cost methods can be designed to consider power interruptions at different 
timescales. Many damage cost methods, however, rely on relatively simple indicators that may not capture the 
full range of damages that would result from significant power interruption events. The damage costs calculated 
by the FEMA BCA methodology are linear and would not reflect the compounding impacts of long-duration power 
interruptions. 

Scalability.  Damage cost methods can be scaled up from the level of the individual customer to larger geographic 
areas. The scalability of the damage cost method will also depend on the assumptions made about the types of 
damages included in scope. Under the FEMA BCA methodology, for example, the damage cost will vary depending 
on whether one assumes that the next closest alternative emergency room is 2, 10, or 50 miles away if the nearest 
hospital loses power. 

Ease of Use. Damage cost methods are relatively easy to apply and are less costly than surveys to develop and 
administer (Dickie, 2003). The FEMA BCA framework, for example, uses ready-made software that has been 
deployed by the federal government and is available online. Damage cost methods can also be comparatively 
straightforward to explain to a lay audience. However, damage cost estimates are sensitive to inputs, some of 
which may be controversial—such as the value of a human life (van Parijs, 1992).  

Scope of Outputs. The basis for damage cost assessments can vary, and this may impact the methods’ applicability 
to regulatory decision making. Damage cost assessments that consider the direct power interruption-related 
costs incurred by customers, for example, may be directly relevant to commissions across a broad range of states. 
NARUC, for example, has published a study with the MD PSC in which damage costs from power interruptions are 
estimated for different customer types (Burlingame & Walton, 2013). Outputs such as the value of critical services, 
however, may only formally factor into decisions in states where regulators are able to consider a broad range of 
benefits in their analysis.  

4.2.3.  Microgrids for community economic security
      IMPLAN: Economy-wide approaches – Input-output analysis

Background
During Stage 2 of the NY Prize program, NYSERDA commissioned a pilot study from IEc to evaluate the Village of 
Rockville Centre community microgrid using an input-output model (IEc, 2018).48 IEc drew inspiration from an 
Electric Power Research Institute (EPRI) report that identified regional economic impact modeling as a method to 
measure the value of avoided power interruptions (EPRI, 2017; IEc, 2018). The pilot study assessed the economic 
activity within the area served by the microgrid and how the microgrid would affect economic activity in the case 
of a major power interruption.

47	   �The 20-year NPV of Major Power Outage Benefits increases as the annual power interruption duration increases. For example, the avoided interruption benefits for an 
annual 24-hour power interruption total $65.6 million (over 20 years); the benefit of avoiding an annual seven-day power interruption total $438.6 million (over 20 years).

48	   �IEc built the cost-benefit analysis tool used to analyze the microgrids during Stage 1 of the NY Prize competition under contract to NYSERDA. IEc was also contracted to 
perform the input-analysis on a pilot basis as part of Stage 2. 
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The Village of Rockville Centre community microgrid was one of 11 projects to advance to Stage 2 in the NY Prize 
program. The proposed microgrid will include up to 0.7 MW solar PV, 6 – 12 MW dual-fuel or gas-fired generation, 
and the possibility for energy storage, demand-side management, and a combined heat and power (CHP) plant. It 
will serve 2,900 residents and 34 critical facilities (NYSERDA, 2017). Overall project costs are estimated at $14.76 
million, in addition to $96,500 in annual operations and maintenance, offset by $2,653,100 in annual revenue (RRT 
SIGMA Engineering & Ove Arup and Partners, PC, 2016).

Method Used
Input-output analyses are economy-wide models that show how processes binding the regional economy are 
affected by a shock, policy, or change of economic circumstances (Larsen et al., 2018). An input-output model can 
quantify (often disproportionate) changes that one economic sector can have on the entire regional economy. 
The model does so by translating changes in productivity in one sector to changes in demand in the regional 
economy. An input-output analysis can represent all inter-industry relationships or flows in an economy; namely, 
how outputs of some industries are used as inputs to others (Sanstad, 2016). IEc used IMPLAN—a commercially 
available input-output tool with historical datasets that allows users to model economic impacts (Sanstad, 2016). 

Outcomes 
To conduct the input-output analysis, IEc collected information about industry sector and facility outputs within the 
microgrid footprint. As there was limited detailed information available, the analysis used assumptions based on 
county-level data available in the IMPLAN database, as well as from the U.S. Census Bureau. The IMPLAN analysis 
for Stage 2 found that a one-day power interruption in the area served by the Village of Rockville Centre microgrid 
would cause $5 million in lost sales, $3.1 million in lost regional GDP, and lost labor income equivalent to sustaining 
32.1 average annual jobs. By contrast, the IEc cost-benefit model that was used to analyze the microgrid for the 
Village of Rockville Centre in Stage 1 of NY Prize calculated that the value of avoiding a 1-day power interruption 
would be $9.7 million (Flight, 2018; RRT SIGMA Engineering & Ove Arup and Partners, PC, 2016). IEc and other 
authors recommend that regional economic benefits should be considered separately from, and should not be 
added to or substituted for, the results of bottom-up analyses such as the cost-benefit analysis conducted in Stage 
1. Instead, the input-output analysis results give a different perspective on the benefits of a regional microgrid (IEc, 
2018; Larsen et al., 2018).

Evaluation
Interruption Duration. Input-output models have advantages over bottom-up methods in estimating the impacts of 
longer-term duration interruptions (Sullivan et al., 2018). The IEc analysis, for example, examined effects of power 
interruption scenarios up to seven days, including additional impacts on labor income at the county and state 
levels. The authors point out, however, that IMPLAN is a static model, meaning that impacts are attributable to one 
moment in time and do not reflect longer term adjustments that may occur in the economy (IEc, 2018). IMPLAN 
assumes fixed coefficients determining the input-output relations between industries, so any valuation resulting 
from the input-output method remains tied to the moment when such relationships were accurate (Larsen et 
al., 2018; Sanstad, 2016).  Put another way, models such as IMPLAN cannot effectively reflect the full economic 
disequilibrium that may result from a long-term power interruption. 

Scalability. Input-output models can analyze economic impacts at multiple scales. Resilient DER systems, however, 
may be small scale and in place at a single facility. Input-output models may not be sufficiently granular to calculate 
a meaningful economic impact from smaller-scale resilient DER systems. Input-output methods are also best used 
for microgrids serving many commercial and industrial facilities, since the analysis is based on market transactions.

Ease of Use. The IMPLAN model is commercially available and is used frequently at the state level for public policy 
analysis. The economic outputs produced (e.g., jobs) are also familiar to a broad range of stakeholders. Input-
output models are comparatively easy to use and less expensive than other methods (Larsen et al., 2018; Sanstad, 
2016). In New York, however, the IEc project team recommended that IMPLAN analyses be reserved for the final 
of pool microgrids chosen for NY Prize Stage 3 because of the level of effort required, rather than deployed broadly 
for projects in earlier stages of project development (IEc, 2018).
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Scope of Outputs. Input-output models generate results that reflect economic impacts, such as jobs and earnings, 
but do not produce outputs that are directly related to utility customer preferences or behaviors. Depending on 
the state, economic impacts may or may not be within the scope of regulatory decision making. 

4.2.4  Microgrids for military bases
     Generator Cost: Revealed preference – Defensive behavior

Background
The US Department of Defense (DoD) and the military services are increasingly focusing on domestic energy 
resilience in order to assure national defense (Rickerson et al., 2018). Historically, DoD’s energy resilience efforts 
have focused on mitigating short-term power interruptions. Recent threat analyses have indicated an increasing 
risk of regional prolonged power disruptions from extreme weather and determined adversaries (CNA, 2015). DoD 
has been steadily updating its policies to place a greater emphasis on critical infrastructure protection. 

	 •	  �The Office of the Secretary of Defense (OSD) established policy that requires military bases to assess 
their critical infrastructure vulnerabilities and to deploy energy efficiency, distributed generation, and/or 
renewable energy sources to enhance energy resilience as needed (DoD, 2009; DoD, 2014). DoD is also 
requiring the development of Installation Energy Plans that identify the critical mission operations on military 
bases that require a continuous supply of energy (Office of the Assistant Secretary of Defense, 2016). 

	 •	  �The Army has issued an energy and water security policy for its installations, requiring that critical missions 
be provided with their required energy and water for 14 days, and the Air Force has issued a policy that 
critical infrastructure be able to function independent of the grid for at least seven days (Secretary of the Air 
Force, 2016; Secretary of the Army, 2017). The Department of the Navy’s Energy Security Framework also 
requires backup power for up to 7 days, depending on the type of facility (Tetatzin, 2017).

	 •	  �The 2019 National Defense Authorization Act (NDAA) amended the Energy Policy of the Department of 
Defense49 to include additional energy resilience requirements. These included establishing specific 
resilience metrics, conducting energy system readiness assessments, reporting on resilience initiatives, and 
prioritizing resilience in energy procurement contracts (Public Law No. 115-232, 2018).50 

The DoD does not currently have a standard method for calculating the value of energy resilience. The Office of the 
Secretary of Defense (OSD) commissioned the development of the Energy Resilience Assessment (ERA) simulation 
tool from MIT Lincoln Laboratory. The OSD ERA tool estimates the cost and capability of existing systems to avoid 
power interruptions of different durations and then compares those results against alternative infrastructure 
combinations (e.g., microgrids with centralized generation, solar PV and storage, fuel cells, etc.). The ERA tool is a 
form of cost effectiveness assessment—it compares the costs of different strategies to avoid an assumed power 
interruption, rather than comparing the cost of those strategies to a quantified benefit for power interruption 
avoidance. The ERA tool will be utilized by projects applying for funding through the DoD Energy Resilience and 
Conservation Investment Program (ERCIP) starting in 2019 (Office of the Assistant Secretary of Defense, 2017). 

Although the military does not have an official cost-benefit analysis approach for resilience, entities outside the DoD 
have attempted to determine a military value of avoided power interruptions. NREL, for example, has conducted 
contingent valuation surveys focusing on the value of avoided power interruptions at military bases (Giraldez et al., 
2012). This section focuses on a report commissioned by the Pew Charitable Trusts that analyzes the business case 
for deploying microgrids for energy resilience at domestic military installations (Marquesee et al., 2017). 

Method Used
The Pew study analyzes scenarios in which small-scale diesel generators connected to individual buildings at 
military bases in different parts of the country are replaced by large-scale diesel generators installed as part of a 
microgrid. 

49	   �10 US Code § 2911, see https://www.law.cornell.edu/uscode/text/10/2911. 

50	   �For example, Section 312 – “Further improvements to energy security and resilience” available at https://www.congress.gov/bill/115th-congress/house-bill/5515/text. 

https://www.law.cornell.edu/uscode/text/10/2911
https://www.congress.gov/bill/115th-congress/house-bill/5515/text
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The Pew study argues that attempts to identify a value for resilience are “misguided.” 51  Since DoD requires the 
installation of a standalone diesel generator at every building that houses a critical load, the study argues, the cost 
of a standalone diesel generator (including up-front capital, O&M, and incremental fuel costs) should “represent 
the value (price) that DoD…places on energy security” (Marquesee et al., 2017, p. 36). The study further argues 
that “the value of energy security should be determined by the least-cost method of providing that security”—i.e., 
of avoiding damage from the power interruption in the first place. “Currently, standalone generators represent 
that least cost method” (Marquesee et al., 2017, p. 36). This approach to valuation can be viewed as a form of 
defensive behavior methodology (Dickie, 2003). The defensive behavior method assumes that electricity users act 
rationally and insure themselves against damages caused by power interruptions when it is economical to do so. 
Customers purchase back-up generators until the expected marginal cost of additional back-up power equals the 
expected marginal cost of a power interruption (Caves et al., 1990). Other studies have also used the cost of back-
up power to value avoided power interruptions (Matsukawa & Fujii, 1994). Although the Pew Center report asserts 
the comparative advantages of the defensive behavior method, the method has both strengths and weaknesses, 
which are discussed in subsequent text. 

Outcomes
The Pew study estimates that the 20-year cost to protect a kilowatt of load using standalone diesel generators is 
between $80 and $85 per kilowatt per year. This cost is then compared to the lifecycle cost of the diesel microgrid. 
The report concludes that diesel generator-based microgrids are more cost-effective on a lifecycle basis than 
standalone generators.52 

Evaluation
Power Interruption Duration. Defensive behavior methods can be scaled up to reflect longer duration power 
interruptions.  When using the cost of diesel generation as a proxy, for example, long-term fuel supplies, 
maintenance costs, and storage facilities can be built into the cost assumptions. It is important to identify the 
assumptions involved in defensive behavior calculations. Many resilience measures are not purchased for long 
duration power interruptions (Phillips et al., 2016). The cost of a diesel generator with a short-term fuel supply 
would not be an appropriate proxy for a long-term duration power interruption—particularly since diesel fuel 
supplies may be disrupted during longer-term power interruptions (Stockton et al., 2016). 

Scalability. Defensive behavior methodologies cannot effectively be scaled up to the level of an entire economy 
(Schröder & Kuckshinrichs, 2015). The U.S. DOE states that scaling up the defensive behavior method “would 
require that voluntary adoption of diesel generators is sufficiently common to allow for a statistically significant 
estimate of customers’ valuation of outage (DOE, 2017, p. 201).” This may not be the case in areas with relatively 
high reliability on “blue sky” days where customers will not typically make security of supply investments, as is the 
case in utility territories across much of the U.S.

Ease of Use. The defensive behavior method does not require survey design and administration and is therefore 
easier and less costly than stated preference methods (Woo & Pupp, 1992). However, the defensive behavior 
method may require additional data gathering, such as data on attitudes, beliefs, and perceptions since purchasing 
decisions are based on a consumer’s perceived costs and benefits (Dickie, 2003). 

Scope of Outputs. Defensive behavior may reflect the investment decisions for an individual customer to invest in 
resilience for their own facility. These investments, however, do not reflect the broader spillover effects of long-
duration power interruptions that could suggest investment in resilience as a public good. 

51	   �The study authors refer to the value of resilience as the “value of energy security” (Marquesee et al., 2017). 

52	   �The report assumes that 160 small-scale diesel generators connected to individual buildings at a military base are replaced by 12 two-megawatt diesel generators installed 
within a microgrid. Decreased operations and maintenance expenses are the primary source of savings created by the microgrid. The report also finds that a hybrid diesel 
and natural gas microgrid would be competitive with small-scale diesel generators in California, but not in other regions of the country. 
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4.3.  Findings regarding DER valuation case studies

The case studies presented above reveal several trends regarding attempts to identify a value of resilience for DER 
investment: 

	 •	  �Governments and institutions are actively exploring the value of resilience for DER, but no standardized 
approach has emerged. 

	 •	  �The value of resilience has been used to analyze cost-benefit tradeoffs, but has not been utilized to justify 
investments in project construction. NYSERDA used the IEc model to evaluate the Stage 1 NY Prize participants 
and has piloted the use of IMPLAN for one Stage 2 participant – but it is unclear how and whether the value 
of resilience will be considered in subsequent decision making. 

	 •	  �As summarized at the beginning of this section in Table 2, there are tradeoffs for regulators related to each of 
the approaches used in the case studies. Some of the methods perform well against some of criteria. None 
of the methods reviewed met all four criteria related to regulator usefulness and usability, however. No 
one method can be used to analyze long-term power interruptions in a way that produces broadly relevant 
outputs, while also being readily scalable to different geographic levels and relatively easy to use. Several of 
the approaches, for example, use readily available models such as the ICE calculator, the FEMA BCA method, 
or IMPLAN, but these models do not capture aspects of resilience to high impact power interruptions that 
are important for decision makers to consider. For example, the ICE Calculator can estimate interruption 
costs for short-duration power interruptions up to 16 hours, but it cannot project ways in which costs may 
compound as power interruptions stretch from days into weeks. 

5.  Conclusions and Next Steps
This report examined current regulatory and non-regulatory approaches to using the value of resilience in 
DER investment decision-making. While there is evidence that resilience is a consideration in both regulatory 
proceedings and non-regulatory analyses, the report finds no standardized approaches for determining a specific 
value of resilience when making investment decisions.

The review of regulatory proceedings in Section 3 found that a value of resilience has not been determined or 
utilized in the analysis of microgrids. The proceedings in Maryland and Illinois do not provide a benchmark or 
precedent for approaching the value of resilience. 

The review of non-regulatory studies in Section 4 found that a value of resilience has been calculated and applied 
to analyze DER investments in several different contexts and using several different methods. However, none of 
the four methods analyzed is a strong fit with the criteria used to evaluate their usefulness to regulators and 
regulatory decision-making. 

Given these findings, regulators attempting to analyze investments in resilient DER have several options.

	 •	  �Do not use a value of resilience in cost-benefit analysis. This was the approach taken by commissions and 
intervenors in regulatory proceedings in Maryland and Illinois. Some resilient DER projects create benefits 
beyond resilience that are sufficient on their own to justify investment. This approach, however, undervalues 
the benefits created by resilient DERs and would constrain investments in projects that do not create 
sufficient additional benefits to move forward. 

	 •	  �Use an alternative benefit analysis methodology that does not require calculating a specific value of resilience. 
As shown in regulatory proceeding summaries in Section 3, the need for a value of resilience is driven by 
the use of cost-benefit analysis to support decision making. Calculating the specific benefit for resilience 
is difficult. Methods such as cost-effectiveness assessment provide an alternative to cost-benefit analysis 
when benefits are difficult to monetize. A challenge with using cost-effectiveness assessments, however, 
is that the resilience objective of the assessment needs to be defined. This would likely require that the 
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resilience objective be formally established and articulated in policy by a legislature, governor, or other 
authority. As discussed in Section 4.2.4, the DoD Defense ERA tool is based on cost effectiveness assessment 
methodology and does not calculate a value of resilience. The tool analyzes the cost effectiveness of energy 
investments that would meet the resilience requirements articulated in official DoD policies and guidance.

	 •	  �Adopt one of the methods described in the case studies profiled in Section 4. Although none of these 
methods meet all four criteria introduced in Section 4, the methods may serve as starting points for 
regulatory analysis. These models may also perform better if viewed through the lens of alternative criteria 
customized for specific regulatory contexts. 

	 •	  �Adapt one of the other the methods identified in Section 4.1 for valuing avoided power interruptions. This 
report focused only on case studies where valuation methods had been used to analyze DER investments. 
Regulators could consider whether there are other methods that could be used in evaluating resilient DER 
investments. Each of the other methods has its own tradeoffs that may or may not present advantages over 
those analyzed in this report. 

	 •	  �Actively engage in research efforts focusing on new approaches to resilience valuation. There are multiple 
ongoing efforts to advance the “frontiers” of energy resilience valuation. These include, for example, new 
survey designs to elicit willingness-to-pay values for power interruptions with longer-durations than those 
used in existing models (Larsen et al., 2018; Sullivan et al., 2018). Regulators could more actively investigate 
or engage in these processes, although as noted earlier in this report, it may take significant time and 
resource commitments to develop and deploy new methods and tools. 

Each of these options has its own sets of tradeoffs and potential limitations. The difficulties involved in valuing 
resilience relate directly to the challenges inherent in analyzing high impact, low probability power interruption 
events. The lack of prior experience with high-impact, low-probability events means that the likelihood and scale 
of potential disruption is difficult to imagine. This means that justifying the high costs of mitigation to ratepayers 
can be challenging. Regulators seeking to build resilience will need to continue to grapple with these issues against 
the backdrop of increasingly severe threats to the electricity grid. 
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