ABOUT NARUC

- The National Association of Regulatory Utility Commissioners (NARUC) is a non-profit organization founded in 1889.
- Our Members are the state utility regulatory Commissioners in all 50 states & the territories. FERC & FCC Commissioners are also members. NARUC has Associate Members in over 20 other countries.
- NARUC member agencies regulate electricity, natural gas, telecommunications, and water utilities.

THE NARUC CENTER FOR **PARTNERSHIPS & INNOVATION**

Background & Focus

- NARUC staff dedicated to providing technical assistance to members.
- CPI identifies emerging challenges and connects state commissions with expertise and strategies to inform their decision making.
- CPI builds relationships, develops resources, and delivers trainings.
- All CPI support is federally funded via cooperative agreements with DOE and NIST.

Newly updated CPI fact sheet with recent

NARUC Center for Partnerships & Innovat

dentifying emerging challenges and connecting state commissions with expertise and strategies to navigate their complex decision-making

he NARLIC Center for Partnerships & Innovation (CPI) builds relationships, develops ources, and delivers training to assist state commissions contending with complex curren of emerging issues. CPI is funded by cooperative agreements with the U.S. Department of nergy (DOE) and the U.S. Department of Commerce's National Institute of Standards and nology (NIST). CPI works across five key areas

Energy Generation	Energy Transmission	Energy Distribution	Energy Customers
Coal & Carbon Management* Nuclear Energy* Natural Gas* Hydrogen Off-Shore Wind Utility-Scale Renewables	Transmission Infrastructure Transmission- Distribution Coordination* Storage Comprehensive Electricity Planning	Integrated Distribution Planning Grid Modernization Microgrids* Performance-Based Regulation* Virtual Power Plants	DER Integration & Compensation* Demand Flexibility* Electric Vehicles* Stakeholder Engagement Energy Justice
Contact Kie	ra Zitelmon	Contact Ju	ffrey Loiter

Critical Infrastructure Preparedness, Response, and Resilience						
•	Cybersecurity for Utility Regulators*	•	Integrated System Resilience*			
•	Energy Emergency Preparedness	•	Defense Community Partnerships			

Sign up for the CPI Newsletter for monthly updates about new resources and forthcoming event

e NARUC CPI team looks forward to engaging with NARUC's members throughout the year-your needs	
drive our priorities and activities. Reach out at any time!	

Danielle Sass Byrnett, Senior Director	Lynn P. Costantini, Deputy Director
dbyrnett@naruc.org, 202-898-2217	lcostantini@naruc.org, 609-915-1685
Kiera Zitelman, Technical Manager	Jeffrey Loiter, Technical Director
kzitelman@naruc.org, 202-898-2212	jloiter@naruc.org, 202-656-2128
Jody Raines, Senior Cybersecurity Policy Specialist	William McCurry, Senior Technical Program Office
jraines@naruc.org, 202-898-8083	wmccurry@naruc.org, 301-875-7368
Elliott J. Nethercutt, Principal Regulatory Policy Specialist	Sarah Fitzpatrick, Technical & Policy Advisor
enethercutt@naruc.org, 202-744-8044	sfitzpatrick@naruc.org, 479-586-7618
Kathryn Kline, Technical Advisor	Hyleah O'Quinn, Technical Specialist
kkline@naruc.org, 404-825-1087	hoquinn@naruc.org, 202-898-8193
Dominic Liberatore, Finance and Logistics Manager	Jessica Diaz, Events Coordinator
diberatore@naruc.org, 202-898-2448	idiaz@naruc.org, 540-729-2854

www.naruc.org/cpi | Last updated February 2023

- State Energy Justice Roundtable Series: Customer Affordability and Ar
- cipation in Decision Making; Energy Justice Metrics (Feb 2023) Mini Guide on PUCs and the Investment Community (Feb 2023)
- Energy Resilience Reference Guide: Chapters 1 & 2 (Jan & Feb 2023)
- Low-Carbon Fuels (Dec 2022) tion in Electric Power Systems and Ree ation: A Primer (Dec 2022)
- arability for Electric Vehicle Charging: A Case Study (Dec 2022)
- ectric Vehicle Interoperability: Considerations for Utility Regulators (Nov 2022)
- ortation Electrification (Nov 2022) Grid Data Sharing: Brief Summary of Current State Practices (Nov 2022)
- Regulator's Financial Toolbox Briefs: Com
- se Energy Resilience Resources Guide & FAQ for Commissioners (Oct 2022) Workforce Development Toolbox: Recruitment Templates and Social Media Eng

ning Virtual Learning Opportunitie

Modern DFR Canabilities and Deployment, March 8: Next in the virtual interc address PLIC questions on DER technical canabilities, deployment concerns, and benefits, Contact Jeff ence for Regulators Webinar Series, March 9: Climate Informed Mitigation Strategies, Find past p

orthcoming Publication

Energy Resilience Reference

Guide Chapter 3: Climate

Black Sky Playbook

State Microgrid Polic

Programmatic, and Reg.

enewable Energy Microgr

Considerations of Advanced

Nuclear in Resource Plannin

- on critical infrastructure resilience, climate resilience, defense energy resilience, and more. Contact Willia Monthly Innovation Webinars, March 16: Advances in Resource Adequacy, Register | past recordings, Contoct /es
- On-Demand, Video-Based Learning Modules. Dozens of training videos in English and Spanish on electricity planning, distribution systems and planning, smart grid and EV interoperation

Upcoming In Person Events Travel stipends available

- the lens of utility regulators with presentations, engaging activities, and more. (Commissioners and staff) Contact Ly
- Nuclear Energy Partnership Pacific Northwest National Lab Site Visit, April 25-28: Tour PNNL and NW nuclear sites. vanced Nuclear State Collaborative kickoff workshop will also take place. (Commi-Natural Gas Partnership Site Visit, Savannah, GA. May 2023: Tour the Elba Island liquefied natural gas export facility
- Port of Savannah compressed natural gas fueling station, and more. (Commissioners only) Contact A More Info Available Soon: Energy Justice Midwest Regional Workshop (early May): Grid Data Sharing Collaboration
- Demonstration Workshop (mid-May in Washington, DC): Resilience Planning Regional Workshop a Member Working Group! For Commissioners and Commission Stu
- owed by questions and facilitated discussions among members. Six sessions: Feb 27 Jun 12. Contoct Je
- rative, Exchange questions, needs, and NARUC-NASEO Microgrids State Working Group, Explore capabilities, costs, benefits.
- microgrids with PUCs and State Energy Offices, Contact Kiera Electric Vehicles State Working Group. Learn and discuss regulatory questions around tra
- ling charging infrastructure buildout, rate design, equity considerations, V2G, and more, Co nce-Based Regulation State Working Group. Examine approaches to performance-based regulation and
- alternative ratemaking across states in a collaborative peer group setting. Contact Elliot I2X Working Groups, DOE/National Lab effort for commissions and stakeholders to identify
- challenges and discuss solutions. Contact Jeff Workforce Development Peer Advisory Group. Supporting recruitment & retention for con

www.naruc.org/cpi | Last updated February 2021

MODERATOR

COMMISSIONER TYLER HUEBNER, PUBLIC SERVICE COMMISSION OF WISCONSIN

SARA BALDWIN, ENERGY INNOVATION

BLAINE COLLISON, RENEWABLE THERMAL COLLABORATIVE

ED RIGHTOR, INFORMATION TECHNOLOGY AND INNOVATION FOUNDATION

Industrial Electrification in U.S. States

Renewable Thermal Collaborative

May 25, 2023

What is the RTC?

The RTC is the only global, buyer-led coalition focused on decarbonizing thermal energy with renewables.

We focus our work across the intersecting issues of **technology**, **market development**, and **policy**.

RTC Members (buy-side) and Sponsors (solutions-side) are invited to participate in multiple RTC workstreams to:

- Identify and address barriers;
- Accelerate solutions;
- Implement projects and policies.

RenewableThermal.org

AND ENERGY SOLUTIONS

info@renewablethermal.org

@Rethermal

RTC Members

info@renewablethermal.org

RTC Sponsors

THERMAL COLLABORATIVE

RTC Technology Workstreams

Renewable Natural Gas Beneficial Electrification

Green Hydrogen

Thermal Energy Storage

Solar Thermal

RenewableThermal.org

info@renewablethermal.org

Industrial Energy Use in 2019 (trillion Btu)

RenewableThermal.org

info@renewablethermal.org

RENEWABLE THERMAL COLLABORATIVE

Beneficial Electrification

All Hasanbeigi, Ph.D. - Global Efficiency Intelligence

Lynn A. Kirshbaum and Blaine Collison - David Gardiner and Associates

Download the report: https://www.renewablethermal.org/state-electrification-report/

Download state factsheets: https://www.renewablethermal.org/state-electrification-factsheets/

- Alabama
- California
- Colorado
- Florida
- Georgia
- Illinois
- Indiana
- Iowa
- Kentucky
- Louisiana

- Michigan
- Minnesota
- North Carolina
- Ohio
- Oklahoma
- Oregon
- Pennsylvania
- Texas
- Washington
- Wisconsin

Sectors Included in Study Scope

Table 1. U.S. industrial subsectors analyzed in this study

No.	Industry subsector	No.	Industry subsector
1	Aluminum casting	7	Steel
2	Pulp and paper	8	Beer
3	Container glass	9	Beet sugar
4	Ammonia	10	Milk powder
5	Methanol	11	Wet corn milling
6	Recycled plastic	12	Crude soybean oil

Electrification of the Container Glass Industry – Energy Saving (>30%)

Change in the container glass industry's total final energy use after electrification (Technical potential assuming 100% adoption rate)

Change in CO₂ emissions in the container glass industry in 2050

- CO₂ emissions reductions can be achieved <u>today</u> using <u>grid electricity</u> in Washington, Oregon,
 California, Illinois, Oklahoma, North Carolina,
 Pennsylvania, Georgia, and Alabama.
- Plant-level CO₂ emissions reductions can be achieved today in any state through electrification projects that are tied with sufficient renewable electricity supply.

Electrification of the Container Glass Industry – Energy Cost

Energy cost per unit of production in the container glass industry

Energy cost is only a small portion of total manufacturing cost for many industrial subsectors. Therefore, a moderate increase in energy

cost per unit of product resulting from electrification will have a minimal impact on the price of final product and final consumers.

RenewableThermal.org

info@renewablethermal.org

Electricity Demand Impacts

Increase in electricity load after industrial electrification in 2030, 2040, and 2050 assuming 100% adoption rate (MW)

RenewableThermal.org

info@renewablethermal.org

RTC Resources

Convenings:

Annual Summit (Oct 19-20, 2023 - Washington, DC): https://www.renewablethermal.org/rtc-summit/

Monthly Community Calls: Second Tuesday, 11a-12p ET

Working Groups:

- Electrification, Green Hydrogen, RNG, Solar Thermal
- Greenhouse Gas Accounting and Claims
- Policy

Tools:

Policy Finder: https://www.renewablethermal.org/policy-finder/

Partner Locator: https://www.renewablethermal.org/partner/

Heat Pump Decision Support Tools: <u>https://www.renewablethermal.org/heat-pump-decision-support-tools/</u>

Electrification Road Map (update pending): https://www.renewablethermal.org/electrification-road-map/

Publications:

Renewable Thermal Vision: https://www.renewablethermal.org/vision/

Case Studies: https://www.renewablethermal.org/category/publications/casestudies/

Industrial Electrification: https://www.renewablethermal.org/state-electrification-report/

Green Hydrogen Technology Assessment: https://www.renewablethermal.org/gh2-tech-assessment/

Communications:

Monthly newsletter: https://www.renewablethermal.org/contact-us/

LinkedIn and Twitter

Thank You!

For more information, please contact:

Blaine Collison blaine@dgardiner.com

Ali Hasanbeigi, Ph.D. Hasanbeigi@globalefficiencyintel.com

Industrial Electrification: Hurdles to GHG Reductions

Edward Rightor Director Center for Clean Energy Innovation, ITIF

NARUC Webinar on Electrification for State Regulators May 25, 2023

Spark Spread

- Ratio of electricity/ natural gas price varies by state
- Where the ratio is high electrification has higher hurdles

<u>Rightor et al.</u>

Interconnections @ Scale are Crucial to Adoption

Grid Transformation & Bidirectional Needs

Aman et al.

Electrification Needs

Address spark spread and lower hurdles for;

- Backend integration, electrical substations, busbars, transformers outside/ inside fence lines
- Interconnections with energy storage (thermal, electrical, chemical, mechanical...) at scale
- Sensing/bidirectional response (know when clean electricity is available, competitively priced, responsive to dynamic needs)
- Effectively handling variable demand, generation, AND storage.

Price and performance parity, reliable, and resilient.

Thank You!

Ed Rightor | erightor@itif.org | @ITIFdc

@ITIFd

C

Industrial Electrification: Implications for State Regulators

NARUC CPI Innovation Webinar May 25, 2023

Sara Baldwin Senior Director, Electrification

Energy Innovation Policy & Technology LLC®

• Non-partisan climate policy think tank working towards a climate safe future where people and the planet thrive with economic, security, and equity benefits.

 We provide objective research based on scientific assessments to identify the most effective economywide emissions reduction policies.

• We prioritize the largest emitting nations and sectors, focusing on policies that accelerate technology-neutral zero-carbon solutions at the speed and scale necessary to fight climate change.

• Our policy recommendations are grounded in data, driven by our open-source and peerreviewed <u>Energy Policy Simulator model</u> and our book <u>Designing Climate Solutions</u>.

Our research is accessible under the CC BY license. Users are free to copy, distribute, transform, and build upon the material as long as they credit Energy Innovation® for the original creation and indicate if changes were made.

U.S. Greenhouse Gas (GHG) Emissions by Economic Sector, 2021

Source: U.S. Environmental Protection Agency

Industrial Sector **GHG** Emissions Vary Across States

Wisconsin 140 120 Million Metric Tons CO₂e 100 80 60 40 20 0 -20 -40

Agriculture

Electricity Water & Waste

Buildings Transportation Land Use

-50

2021 GHG Emissions by Sector

Source: Energy Innovation & RMI, Top State Energy Policies to Cut Carbon Emissions, February 2023.

Modeled Policies for Industrial Decarbonization (example)

- Electrification for low- and medium-heat processes
- Other electric technologies and decarbonized fuels, such as green hydrogen, for high-temperature processes and feedstocks
- Energy efficiency upgrades

Source: Energy Innovation & RMI, Top State Energy Policies to Cut Carbon Emissions, February 2023.

Percentage Heat Demand by Temperature Range by Industry (U.S., 2021)

Figure 2. U.S. industrial heat demand by temperature range by industry in 2021. "Nonmetallic minerals" include cement, lime, glass, brick, tile, etc. Excludes heat for non-process uses, such as HVAC services for the comfort of workers.^{4,5} Source: Rissman, Jeffrey, <u>Decarbonizing Low-Temperature Industrial Heat in the U.S.</u>, Energy Innovation, October 2022.

Temperature Range (°C)	Example Industries	Electrical Technologies
430-1650	Iron and steel, non-ferrous metals	Electric arc furnace, induction furnace
70-540	Chemicals, food processing	Heat pumps, electric resistance
430-1650	Iron and steel, non-ferrous metals	Electrolysis, electric resistance, green hydrogen combustion
800-1100	Cement, lime	Plasma torch, electric resistance, green hydrogen combustion
800-1650	Glass, ceramics	Plasma torch, electric resistance, green hydrogen combustion
900-1500	Machinery, vehicles, construction, metal products	Electric arcs, lasers, electron beams
Very high	Machinery, vehicles, construction, metal products	Electric arcs, lasers, electron beams
70-300	Food processing, plastic products, wood products	Dielectric heating, infrared heating
100-150	Vehicles, misc. products	UV light, infrared heating
120-300	Plastic products	Electric resistance, dielectric heating
100-370	Food processing	Heat pumps, UV light, dielectric heating
100-370	Food processing, rubber, some mineral and construction materials	Infrared heating, dielectric heating
100-800	Metal products, vehicles	Induction, infrared heating
2000-3000	synthetic graphite, specialty metals, vapor deposition coatings	Electric arcs, induction, lasers, electron beams
	Range (°C) 430-1650 70-540 430-1650 800-1650 800-1500 900-1500 Very high 70-300 120-300 100-370 100-370 100-800	430-1650Iron and steel, non-ferrous metals70-540Chemicals, food processing430-1650Iron and steel, non-ferrous metals800-1100Cement, lime800-1650Glass, ceramics900-1500Machinery, vehicles, construction, metal productsVery highMachinery, vehicles, construction, metal products70-300Food processing, plastic products, wood products100-150Plastic products120-300Plastic products100-370Food processing, rubber, some

In the U.S., shifting to industrial heat pumps for low-temperature process heat would...

...reduce GHG emissions by 16% in 2050, relative to BAU.

Source: Rissman, Jeffrey, <u>Decarbonizing Low-Temperature Industrial Heat</u> in the U.S., Energy Innovation, October 2022. ...increase electricity demand 12% in 2030 and 41% in

2050.

Regulatory Considerations for Industrial Electrification

- Impact on utility forecasts, planning, and investment needs
- Implications for future demand of gas and electricity
- Opportunities to adopt or update energy efficiency programs
- Rate design to encourage energy efficiency and electrification
- Inflation Reduction Act support
 - \$10 billion for the 48C Manufacturing Tax Credit that could be used to accelerate industrial heat pump adoption; eligibility for the tax credit includes re-equipping an industrial or manufacturing facility with equipment designed to reduce greenhouse gas emissions by at least 20 percent through the installation of... low- or zero- carbon process heat systems.
 - The Advanced Industrial Facilities Deployment Program authorizes \$5.8 billion to support the purchase, installation, retrofits, or upgrades to industrial facilities to use "advanced industrial technology."

Thank you!

Sara Baldwin @Sara_Baldwin2 (twitter) @Sara E. Baldwin (linkedin)

ENERGY INNOVATION **Connect with us...** Twitter: <u>@EnergyInnovLLC</u> LinkedIN: <u>Energy Innovation Policy and Technology LLC</u> Web: <u>https://energyinnovation.org</u> Sign up for our newsletters: <u>https://energyinnovation.org/newsletters/</u> Industrial Electrification Technologies

DISCUSSION AND Q & A

NARUC Innovation Webinar Series

One webinar most months

All NARUC members and stakeholders are invited

Incorporating AI into Resilience-Informed Utility System Planning

June 20, 2023 | 3:00 - 4:00 PM EST

Topic TBD

July 27, 2023 | 3:00 – 4:00 PM EST

More webinar information will be added soon!

https://www.naruc.org/cpi-1/innovation-webinars/

