

Renewable Integration Impact Assessment

Finding integration inflection points of increasing renewable energy

NCEP Webinar Sept. 13th, 2018

Renewable energy is growing; will it significantly impact the grid?

RIIA - 9/13/2018

Renewable Integration Impact Assessment (RIIA) seeks to find inflection points of renewable integration complexity

RIIA Wind, UPV, and DPV Modeled Expansion

As renewable penetration increases, the risk of losing load shifts and compresses to a smaller number of hours

- Probability of losing load is targeted at one day in ten years over all penetration levels.
- While aggregate risk remains constant, the risk in particular hours increases.

5

Changes to net load shapes are seasonal, however the risk of losing load still occurs during the summer at higher penetration levels

Wind

Solar

*Profile shapes represent seasonal hourly averages across the 6 study years. *Summer includes May, June, July, and August; Winter includes January, February, November, and December

Diversity of technologies improves the ability of renewable resources to mitigate the risk of losing load

Geographic diversity improves the ability of renewable resources to mitigate the risk of losing load

Sites	ELCC
10% sites scaled to 100% level*	11.1%
50% sites scaled to 100% level*	13.4%
100% sites	14.0%

*Generation at sites selected for 10% and 50% penetration levels was scaled to match the generation needed for the 100% penetration level.

Conventional generation is dispatched down as renewable penetration increases

9 DRAFT RESULTS

RIIA - 9/13/2018

The direction of ramping needs from conventional resources reverses as renewable penetration increases

Daily gas and coal generation for the peak renewable day

Due to input assumptions, coal and gas have similar costs in the RIIA model. This causes their similar behavior.

RIIA - 9/13/2018

Traditional points of transmission stress are changing as renewable penetration grows

MISO Renewable Generation vs. MISO Load (30% case)

Energy flow patterns change dramatically as renewable penetration increases

System fix complexity is concentrated in areas of high renewable deployment, but is moderate at the 20% penetration level

 Quantifies the magnitude of integration complexity in terms of approximate costs from all transmission fixes needed for steady state thermal and voltage issues up to the 20% renewable milestone.

By examining increasing penetrations of renewables, several key takeaways have been thus far found

- 1. Risk of losing load compresses into a small number of hours and shifts to later in the day
- 2. As a result of the shift in risk of losing load, the available energy from wind and solar during high risk hours decreases
- 3. Diversity of technologies and geography improves the ability of renewables to meet load
- 4. The direction of ramping needs from conventional resources reverses as renewable penetration increases
- 5. Under RIIA assumptions for renewable penetration levels up to 20%, the integration complexity is mild

Thanks!

Questions?

Jordan Bakke jbakke@misoenergy.org

All RIIA-related documents can be found on MISO's web page. https://www.misoenergy.org/planning/transmission-studies-and-reports/

Phase 2 will continue looking at higher penetration levels and is expected to be completed by the end of the year

