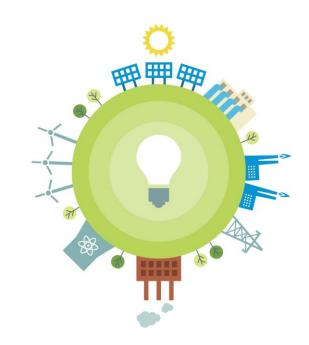


Impact of Distributed Energy Resources on Transmission System Reliability

National Council on Electricity Policy (NCEP)


**ISO-NE PUBLIC** 

#### Alan McBride

DIRECTOR, TRANSMISSION STRATEGY & SERVICES

#### **Key Points**

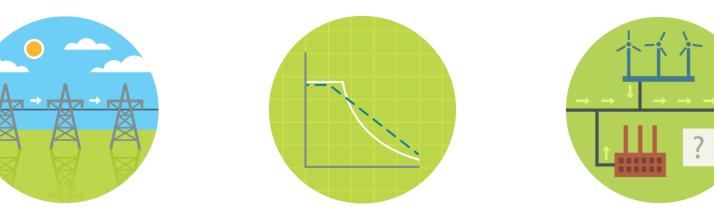
• As New England adds significant amounts of **Distributed Energy Resources (DER**), it is essential for these resources to be interconnected in a way that does not adversely impact the reliability of the Bulk Electric System (BES)



- The revision to **IEEE Standard 1547** (*Standard for Interconnecting Distributed Resources with Electric Power Systems*) will not be *fully* implemented until 2020 or later
- ISO-NE identifies in this presentation interim requirements for the performance of solar PV DER that are required to ensure support of the reliability of the Bulk Electric System

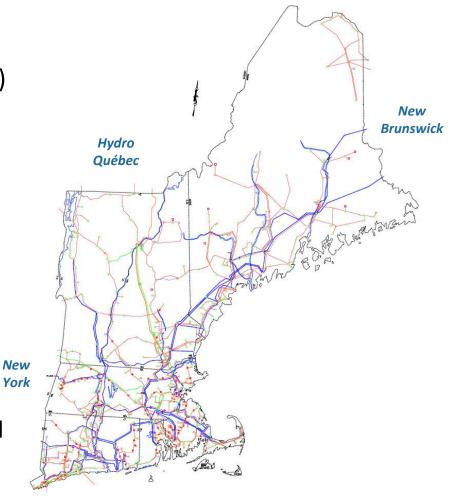
## ISO New England Performs Three Critical Roles to Ensure Reliable Electricity at Competitive Prices

#### Grid Operation


Coordinate and direct the flow of electricity over the region's high-voltage transmission system

#### Market Administration

Design, run, and oversee the markets where wholesale electricity is bought and sold


#### Power System Planning

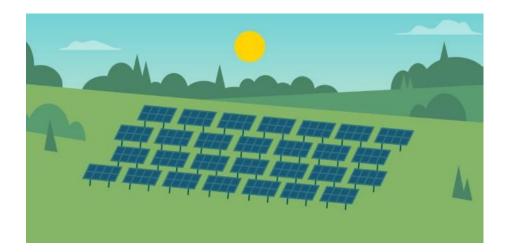
Study, analyze, and plan to make sure New England's electricity needs will be met over the next 10 years



## New England's Transmission Grid Is the Interstate Highway System for Electricity

- 9,000 miles of high-voltage transmission lines (115 kV and above)
- **13 transmission interconnections** to power systems in New York and Eastern Canada
- **17%** of region's energy needs met by imports in 2017
- \$10 billion invested to strengthen transmission system reliability since 2002; \$2.3 billion planned
- Region's all-time summer peak demand set on August 2, 2006 at 28,130 MW

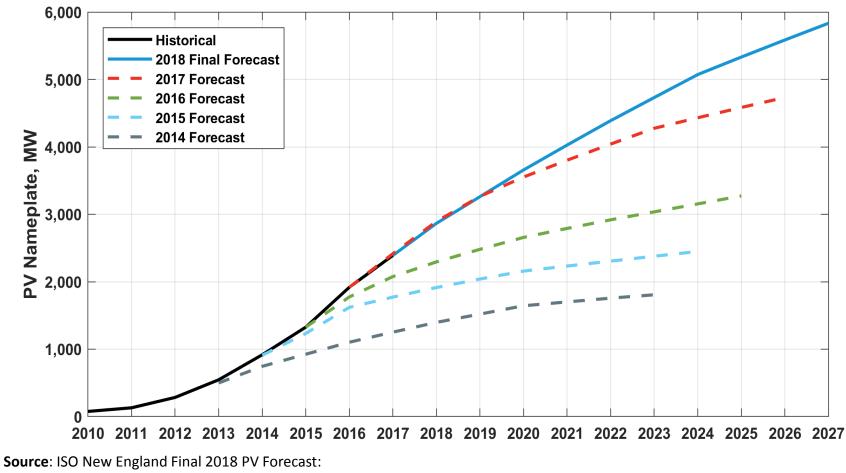



#### BACKGROUND

#### The Growth of Distributed Energy Resources in New England



#### The ISO Is Forecasting Significant Solar Growth


 Each year, the projections increase for the amount of DER in New England, thus making DER impact on the BES reliability a larger concern





#### **Significant PV Growth: Reported Historical vs. Forecast**

ISO Updates the Forecast Annually to Capture Policy Changes



https://www.iso-ne.com/static-assets/documents/2018/03/a03-2018-pv-forecast.pdf

#### **Bulk Electric System Planning Criteria**

- Planning criteria require that the transmission system remain secure for faults with normal or delayed fault clearing
  - Normal clearing of a three-phase fault on the 345 kV system takes approximately 0.1 seconds and delayed clearing of a single phase fault on the 345 kV system takes approximately 0.1-0.2 seconds
  - Normal clearing of a three-phase fault on a the 115 kV system can range from 0.1 seconds to over 0.5 seconds depending on the protective relay scheme and delayed clearing of a single phase fault on a the 115 kV system can range from 0.3 seconds to over a second depending on the protective relay scheme
- In a 12/16/13 stakeholder presentation, ISO-NE described its reliability concern that New England may lose significant amounts of DER due to transmission faults\*
  - The ISO's analysis showed that a fault on the transmission system can cause low voltage over a large portion of the New England system



#### Bulk Electric System Planning Criteria, continued

- ISO-NE is required to plan for the contingency loss of resources (including DER) for conditions included in planning criteria mandated by NERC and NPCC
- ISO New England plans and operates the transmission system to ensure that the loss of a large source of supply (source loss) does not adversely impact the reliability of the Eastern Interconnection
- Historically, the concern has been source loss due to large generators being disconnected or going unstable and tripping
- Tripping of large quantities of distributed energy resources (DER) for a transmission fault would add to source loss
- If total source loss exceeds the amount allowed by the planning criteria, a transmission system upgrade would be required, and this could negatively impact the benefits of policies to encourage renewable energy

#### STATUS OF IEEE 1547 AND UL 1741



#### **IEEE 1547 Standard Update**

- IEEE 1547, the IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, was originally issued in 2003 (1547-2003)
- In 2014, Amendment 1 was approved (IEEE 1547a) to allow ranges of settings for tripping distributed resources for abnormal voltage and frequency
  - Amendment 1 also allowed settings to regulate voltage with the agreement of the interconnecting utility
- In December 2013, IEEE started the process to undertake a complete revision to IEEE 1547
- In 2017, the revised IEEE 1547 was balloted and approved
- The standard was then updated to address comments from the balloters, was re-balloted and approved by a greater margin

#### **IEEE 1547 Implementation Timeline**

- The approved revision to 1547 underwent final editing at IEEE and was published in early April 2018
- Before DER can be certified as meeting the revised 1547, the testing standard 1547.1 must be revised
- Work on 1547.1 is on-going and is optimistically expected to be completed by the end of 2018
- Once 1547.1 is approved, UL 1741 will need to be updated to agree with the revised 1547.1
- Once UL 1741 is updated and approved, it will take a year, or longer, for all inverter manufacturers to have their inverters tested and certified
- Thus it will be potentially 2020, and likely later, before utilities will be fully able use the revised IEEE 1547

#### UL 1741

- **UL 1741** is the UL Standard for Safety for Inverters, Converters, Controllers and Interconnection System Equipment for Use With Distributed Energy Resources
  - The second edition was dated January 28, 2010
  - UL 1741 was revised as of September 7, 2016 to incorporate the new supplement "SA"
- UL 1741 SA defines requirements for "Grid Support Utility Interactive Inverters"
  - These inverters have the capabilities required by California Rule 21
  - As of September 9, 2017, inverter-based generation in California is required to be certified as meeting UL 1741 SA

ISO-NE PUBLIC

#### **INTERIM SOLUTION**



## **Interim Solution**

- Because of the rapid growth of solar PV in New England and the timeline for full implementation of the revision to IEEE 1547, ISO-NE sought out an **interim solution** for obtaining ride-through for voltage and frequency variations
- Inverters meeting the requirements of UL 1741 SA have the capabilities required by ISO-NE
- Choosing performance requirements for these inverters required the input from distribution engineers, solar PV developers and inverter manufacturers
- ISO-NE worked with the Massachusetts Technical Standards Review Group (TSRG) to get input from these entities

## Interim Solution, continued

- The development of inverter performance requirements and an associated implementation plan was required to address multiple issues
  - Transmission reliability
  - Distribution protection
  - Retaining maximum trip time
  - Anti-islanding protection
  - Conformance with the revised IEEE 1547
  - Allowing time for manufacturers to develop software to implement ISO-NE settings
- Balancing these and other issues, ISO-NE and the TSRG developed a Source Requirement Document (SRD) and an implementation plan
  - An SRD can be used by UL for the certification of equipment

ISO-NE PUBLIC

The ISO-NE SRD is based on the UL 1741 SA

# **Interim Solution: SRD Voltage Trip Settings**

| Shall Trip – IEEE Std 1547-2018 (2 <sup>nd</sup> ed.) Category II |                                         |                     |                                                                                                                                |                                       |                                               |  |
|-------------------------------------------------------------------|-----------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------|--|
|                                                                   | Required Settings                       |                     | Comparison to IEEE Std 1547-2018 (2 <sup>nd</sup> ed.)<br>default settings and ranges of allowable<br>settings for Category II |                                       |                                               |  |
| Shall Trip Function                                               | Voltage<br>(p.u. of nominal<br>voltage) | Clearing<br>Time(s) | Voltage                                                                                                                        | Clearing<br>Time(s)                   | Within<br>ranges of<br>allowable<br>settings? |  |
| OV2                                                               | 1.20                                    | 0.16                | Identical                                                                                                                      | Identical                             | Yes                                           |  |
| OV1                                                               | 1.10                                    | 2.0                 | Identical                                                                                                                      | Identical                             | Yes                                           |  |
| UV1                                                               | 0.88                                    | 2.0                 | Higher<br>(default is 0.70<br>p.u.)                                                                                            | Much shorter<br>(default is<br>10 s)  | Yes                                           |  |
| UV2                                                               | 0.50                                    | 1.1                 | Slightly higher<br>(default is<br>0.45 p.u.)                                                                                   | Much longer<br>(default is<br>0.16 s) | Yes                                           |  |

May be updated to agree with NERC PRC-024-2 but is currently within limits of IEEE Std 1547.

## **Interim Solution: SRD Frequency Trip Settings**

| Shall Trip Function | Required Settings |                     | Comparison to IEEE Std 1547-2018 (2 <sup>nd</sup> ed.)<br>default settings and ranges of allowable settings<br>for Category I, Category II, and Category III |                     |                                            |
|---------------------|-------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------|
|                     | Frequency<br>(Hz) | Clearing<br>Time(s) | Frequency                                                                                                                                                    | Clearing<br>Time(s) | Within ranges<br>of allowable<br>settings? |
| OF2                 | 62.0              | 0.16                | Identical                                                                                                                                                    | Identical           | Yes                                        |
| OF1                 | 61.2              | 300.0               | Identical                                                                                                                                                    | Identical           | Yes                                        |
| UF1                 | 58.5              | 300.0               | Identical                                                                                                                                                    | Identical           | Yes                                        |
| UF2                 | 56.5              | 0.16                | Identical                                                                                                                                                    | Identical           | Yes                                        |

**ISO-NE PUBLIC** 

## **Interim Solution-Timeline**

| State                   | ISO-NE SRD Implementation Schedule                                                                                                                                                       |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Connecticut             | All solar PV projects with applications submitted on or after June 1, 2018                                                                                                               |  |  |
| Maine                   | All solar PV projects with applications submitted on or after September 1, 2018                                                                                                          |  |  |
| Massachusetts           | Solar PV projects greater than 100KW with applications submitted on<br>or after March 1, 2018<br>Solar PV projects 100kW or less with applications submitted on or<br>after June 1, 2018 |  |  |
| New Hampshire           | All solar PV projects with applications submitted on or after June 1, 2018                                                                                                               |  |  |
| Rhode Island            | Solar PV projects greater than 100KW with applications submitted on<br>or after March 1, 2018<br>Solar PV projects 100kW or less with applications submitted on or<br>after June 1, 2018 |  |  |
| Vermont                 | Implementation timeline currently* under development                                                                                                                                     |  |  |
| Municipals & Co-<br>ops | Implementation timeline currently* under development                                                                                                                                     |  |  |

ISO-NE PUBLIC

\* As of September 13, 2018

#### **NEXT STEPS**



#### **Next Steps**

- ISO-NE is working with utilities and regulators in New England to implement the ISO-NE SRD
  - Having one SRD for all of New England will minimize developers' costs
  - Having one SRD will simplify the modeling of DER in planning
- ISO-NE is working with Municipal Utilities and Co-ops to implement the ISO-NE SRD on their systems
- ISO-NE will work with utilities to optimize the utilization of advanced inverter functions that will be available under the revised IEEE 1547, and update its SRD as needed

ISO-NE PUBLIC

# Questions

**ISO-NE PUBLIC** 



