NARUC-NASEO Nuclear Resource Repository Last updated March 4, 2024 | Author | Title / Description | Date | Length | | | |---|--|------------|----------|--|--| | General Information on Advanced Nuclear's Role and Potential for Growth | | | | | | | Prepared for the
National
Association of
Regulatory Utility
Commissioners by
Energy Ventures
Analysis | Nuclear Energy as a Keystone Clean Energy Resource Nuclear energy's contribution to clean electricity Recommendations for state regulators and policymakers to retain and advance nuclear generation | Aug. 2022 | 60 pages | | | | U.S. Department of
Energy, Argonne
National Lab | Pathways to Commercial Liftoff: Advanced Nuclear Provides perspective on how and when various advanced nuclear technologies can reach full-scale commercial adoption Estimates between 108 - 455 GW of advanced nuclear capacity by 2050 | March 2023 | 53 pages | | | | Prepared for the U.S. Department of Energy by the National Reactor Innovation Center, Gateway for Accelerated Innovation in Nuclear, and Idaho National Lab | Nuclear Energy Supply Chain Deep Dive Assessment Description of current and future roles for nuclear energy in the U.S. and abroad, segments of the nuclear energy supply chain, and risks | Feb. 2022 | 60 pages | | | | Nuclear Energy
Institute | State Legislation and Regulations Supporting Nuclear Energy Periodically updated list of state legislative actions in support of nuclear | Jan. 2023 | 20 pages | | | | Prepared for the
U.S. Department of
Energy by Argonne
National Lab and
Idaho National Lab | Factors Impacting Nuclear Energy Share in U.S. Energy Markets Collates information and findings from recent studies conducted by national and international entities to identify approaches for maintaining | Aug. 2020 | 60 pages | | | | | | | ı | | |---|--|------------|-----------|--| | | or enhancing the role of nuclear energy in the current and future U.S. energy mix | | | | | National
Conference of
State Legislatures | Nuclear Power and the Clean Energy Transition Motivations for state consideration of nuclear power State legislative actions to support nuclear Federal legislation (IIJA, IRA) and DOE programs | April 2023 | 20 pages | | | National
Academies of
Sciences,
Engineering, and
Medicine | Laying the Foundation for New and Advanced Nuclear Reactors in the United States • Identifying opportunities and barriers to advanced nuclear reactor commercialization in the U.S. over the next 30 years as part of a decarbonization strategy • Recommendations for DOE, NRC, other federal agencies, industry, and other stakeholders to accelerate commercialization | April 2023 | 278 pages | | | Electric Power Research Institute & Nuclear Energy Institute | Outlines the critical strategies and support actions necessary for the successful large-scale deployment of advanced reactors. | May 2023 | 66 pages | | | National
Academies of
Sciences,
Engineering, and
Medicine | Merits and Viability of Different Nuclear Fuel Cycles and Technology Options and the Waste Aspects of Advanced Nuclear Reactors • Explores merits and viability of different nuclear fuel cycles, including fuel cycles that may use reprocessing, for both existing and advanced reactor technologies • Discusses waste management (including transportation, storage, and disposal options) for advanced reactors, and in particular, the potential impact of advanced reactors and their fuel cycles on waste generation and disposal | | 315 pages | | | Advanced Nuclear Technology Primers | | | | | | Nuclear Innovation
Alliance | Advanced Nuclear Reactor Technology: A Primer Summary discussion of advanced reactor types Water-cooled reactors Non-water-cooled reactors: Salt- and sodium-cooled High temperature gas reactors Gas-cooled fast reactors Microreactors DOE Advanced Reactor Demonstration Program | Sept. 2021,
updated
March 2023 | 46 pages | |---|--|--------------------------------------|-----------| | Resources for the Future | Advanced Nuclear Reactors 101 Brief report on advanced reactors, including definitions of basic terminology | March 2021 | 10 pages | | Nuclear Innovation
Alliance | Advanced Reactor Deployment Timelines • Brief one-pager on currently announced advanced reactor projects and corresponding timelines for deployment | November
2022 | 1 page | | Nuclear Energy
Agency | The NEA Small Modular Reactor Dashboard The SMR Dashboard assesses SMR technology progress across six criteria: (licensing readiness, siting, financing, supply chain, engagement and fuel) | April 2023 | 78 pages | | Transitioning Coal P | lants to Host Advanced Reactors | | | | Prepared for the
U.S. Department
of Energy by
Argonne National
Lab, Idaho
National Lab, and
Oak Ridge
National Lab | Investigating Benefits and Challenges of Converting Retiring Coal Plants into Nuclear Plants • Study of the impacts and potential outcomes of a coal to nuclear transition • Evaluates characteristics of several recently retired plants | Sept. 2022 | 111 pages | | Prepared for the
Maryland Energy
Administration by
X-energy and
Frostburg State
University | Feasibility Assessment and Economic Evaluation: Repurposing a Coal Power Plant Site to Deploy an Advanced Small Modular Reactor Power Plant Report on the feasibility and economic impact of siting a four-unit Xe-100 SMR at an existing coal generation facility in Maryland Includes a Strategic Communications Plan to ensure a smooth community engagement | November
2022 | 42 pages | | | process near the plant | | | | |--|--|------------|-----------|--| | Bipartisan Policy
Center | Can Advanced Nuclear Repower Coal Country? | March 2023 | 30 pages | | | Models Forecasting Advanced Nuclear Capacity through 2035 - 2050For reports longer than 50 pages, links to report synopsis webpages with summary facts and figures are included instead of links to the direct reports. All reports generally include a low, high, and (for some) medium cases for nuclear deployment, although assumptions and methodologies for cases differ across reports. | | | | | | Prepared for the U.S. Department of Energy by National Renewable Energy Lab | 100% Clean Electricity by 2035 Estimates between 3 - 393 GW of advanced nuclear capacity by 2035 | 2022 | 161 pages | | | Princeton
University | Net-Zero America: Potential Pathways. Infrastructure. and Impacts • Estimates between 245 - 285 GW of advanced nuclear capacity by 2035 | Oct. 2021 | 348 pages | | | Breakthrough
Institute | Advancing Nuclear Energy • Estimates between 185 - 469 GW of advanced nuclear capacity by 2050 | July 2022 | 155 pages | | | Vibrant Clean
Energy | Role of Electricity Produced by Advanced Nuclear Technologies Estimates between 60 - 336 GW of advanced nuclear capacity by 2050 | June 2022 | 40 pages | | | Prepared for the U.S. Department of Energy by Pacific Northwest National Lab | Scenarios of Nuclear Energy Use in the United States in the 21st Century • Estimates between 90 - 450 GW of advanced nuclear capacity by 2050 | Aug. 2022 | 48 pages | |