IEEE 1547-2018 and IEEE 1547a-2020

Opportunities, Adoption Methods & Stakeholder Coordination

Jose Cordova Jens Boemer

Virtual Training on Bulk Power System Issues for State Energy Officials

June 22, 2021

Steps to Unlock Benefits of Advanced DER

*FERC Order 2222 Phase 1: Collaborative Forum, Gap Assessment, and Implementation Roadmap, https://www.epri.com/research/products/0000000300202010

Potential Impacts of Aggregate DER on-Bulk Power System Reliability

DER Frequency Ride-Through versus Tripping

- System frequency is defined by balance between load and generation
- Frequency is similar across entire interconnection
 - any DER exposed to large frequency deviations may trip simultaneously;
 - special concerns for system-split conditions
- Impact the same whether or not DER is on a high-penetration feeder
- NERC Reliability Coordinators
 - Colored entities in the map to the right

DER Voltage Ride-Through versus Tripping

Source: SCE

- Transmission faults can depress distribution voltage over very large areas
- Sensitive voltage tripping (i.e., 1547-2003) can cause massive loss of DER generation
- Resulting BPS event may be greatly aggravated

Role of IEEE Std 1547-2018

www.epri.com

How IEEE 1547 Relates to Other Requirements

5

Capability versus Utilization

(Performance) Capability

- Functions
- Ranges of available settings

Examples

0

0

0

0

0

Frequency Response 0

Ride-Through

- Frequency Droop Response 0
- Ramp rate limitations 0

Voltage ride-through

ROCOF ride-through

Consecutive voltage

ride-through

Frequency ride-through

Phase angle jump ride-through

Utilization of Capability

- Enable/disable functions
- Functional settings / configured parameters

Examples

- Deadband \bigcirc
- Droop 0
- **Response Time** 0

 \bigcirc

IEEE 1547-2018 Adoption Methods

General Reference

- Full adoption of standard by general <u>reference</u>
- Specification of
 - performance categories
 - normal category
 - abnormal category
 - functional settings (utility-required profiles)
 - standardized comms. protocols

www.epri.com

- Full or partial adoption of std
- Clause-by-clause <u>references</u>
- Any additional requirements

EPRI's Generic TIIR Template

Benefit: Consistency to standard

Risk: Fragmentation of requirements, certification challenges, additional costs

- All on the left
- Clause-by-clause <u>own language</u>
- Any additional requirements

Benefit: No need to buy standard

Risk: Inconsistencies to standard and fragmentation of requirements, certification challenges, additional costs

EPRI Recommended Steps for IEEE 1547-2018 Adoption

Balancing Bulk & Distribution Grid Needs

Distribution Grid Side

- •<mark>Short trip times</mark>
- •Ride-through with momentary cessation
- Voltage rise concerns
- •Islanding concerns
- Protection coordination
- •Safety of line workers

Increasing need for T&D Coordination

Public EPRI-U Webinars <u>3002014545</u> <u>3002014546</u> <u>3002014547</u>

Bulk System Side

- Long trip times
- •Ride-through *without* momentary cessation
- Reactive power support
- •Dynamic voltage support during abnormal voltage
- •Frequency support

Adoption guidelines from Reliability Coordinators for IEEE Std 1547-2018

EPRI Recommended Steps for IEEE 1547-2018 Adoption

EPRI Recommended Steps for IEEE 1547-2018 Adoption

Layers of Smart Inverter Settings with IEEE 1547-2018 Adoption

Timeline for Rollout of IEEE Std 1547[™]-2018 Compliant DER

Q&A

Together...Shaping the Future of Electricity

Jens Boemer +1 206.471.1180 jboemer@epri.com Jose Cordova 859-285922 jcordova@epri.com Devin Van Zandt +1 518.281.4341 dvanzandt@epri.com **Tom Key** (865) 218-8082 <u>tkey@epri.com</u> Brian Seal (865) 218-8181 bseal@epri.com

RTOs/ISOs Guidelines for IEEE Std 1547™-2018 Adoption

<u>See also NERC's Reliability Guideline</u> Bulk Power System Reliability Perspectives on the Adoption of IEEE 1547-2018 (March 2020)

Publicly Available EPRI Resources on IEEE Std 1547-2018

Webinar	Quiz
Public (3002014545)	<u>Quiz 1</u>
Public (3002014546)	Quiz 2
Public (3002014547)	<u>N/A</u>
	Public (<i>3002014545</i>) Public (3002014546)

https://www.epri.com/#/epri-u?lang=en-US

EPRI White Papers	Availability
5. <i>Fact Sheet</i> , May 2017	Public (3002011346)
6. Minimum Requirements for DERs Ride-Through, May 2015	EUDIC (3002006203)
7. <u>Communications Interface and Interoperability</u> , Jul. 2017	Public (3002011591)
8. Power Quality Considerations for DERs, Dec. 2017	Euclic (3002010282)

https://www.epri.com/#/?lang=en-US

Comparison of P2800 Initial Ballot Draft with IEEE 1547-2018

Function Set	Advanced Functions Capability	IEEE 1547- 2018	IEEE P2800
	Frequency Ride-Through (FRT)	‡	‡
	Rate-of-Change-of-Frequency Ride-Through	‡	‡
	Voltage Ride-Through (VRT)	‡	‡
Bulk System	Transient Overvoltage Ride-Through	‡	‡
Reliability &	Consecutive Voltage Dip Ride-Through	+	‡
	Voltage Phase Angle Jump Ride-Through	‡	‡
Frequency Support	Frequency-Watt	‡	‡
Support	Fast Frequency Response / Inertial Response	v	‡
	Return to Service (Enter Service)	‡	‡
	Black Start	٧	٧
	Abnormal Frequency Trip	+	٧
	Abnormal Voltage Trip	‡	٧
	Unintentional Islanding Detection and Trip	‡	٧
Protection &	Limitation of DC Current Injection	‡	
Power Quality	Limitation of Voltage Fluctuations	‡	+
	Limitation of Current Distortion	‡	+
	Limitation of Voltage Distortion		٧
	Limitation of (Transient) Overvoltage	‡	+
	Provision of Verified Models		(‡)
	Collection of Measurement Data	(‡)	(‡)
	Type Tests	(‡)	(‡)
Test,	Production Tests	(‡)	
Verification,	Plant-Level Design Evaluation	(‡)	(‡)
Modeling &	Commissioning Tests	(‡)	(‡)
Measurements	Model Validation		(‡)
	Performance Monitoring		(‡)
	Periodic Tests	(‡)	(‡)
	Periodic Verification	(‡)	(‡)

X Prohibited, V Allowed by Mutual Agreement, ‡ Capability Required, (‡) Procedural Step Required as specified, Δ Test and Verification Defined

Function Set	Advanced Functions Capability	IEEE 1547- 2018	IEEE P2800
General	Adjustability in Ranges of Allowable Settings	‡	‡
	Prioritization of Functions	‡	‡
	Ramp Rate Control		
	Communication Interface	‡	‡
Monitoring,	Disable Permit Service (Remote Shut-Off, Remote Disconnect/Reconnect)	+	+
	Limit Active Power	‡	‡
Control, and Scheduling	Monitor Key DER Data	‡	+
Scheduling	Remote Configurability	‡	‡
	Set Active Power		+
	Scheduling Power Values and Models		v
	Constant Power Factor	‡	‡
Reactive Power & (Dynamic) Voltage Support	Voltage-Reactive Power (Volt-Var)	‡	‡
	Autonomously Adjustable Voltage Reference	‡	
	Capability at zero active power ("VArs at night")		‡
	Active Power-Reactive Power (Watt-Var)	‡	
	Constant Reactive Power	‡	‡
	Voltage-Active Power (Volt-Watt)	‡	
	Dynamic Voltage Support during VRT	٧	‡
	Unbalanced Dynamic Voltage Support during VRT		‡

Legend:

IEEE Standards Classification and Consensus Building

