Committee on Energy Resources and the Environment

Electric utilities and the cost of pursuing new load: what makes these rate-recoverable expenses?
Modeling Framework and Results to Inform Charging Infrastructure Investments

Eric Wood
National Renewable Energy Laboratory

July 2018

NARUC Summer Policy Summit
Methods to Quantify Load Growth from EVs

• Electric vehicles represent a small (but growing) segment of auto sales... *and new load for utilities!*

![U.S. Plug-In Car Sales](image)

- Estimating impact on EV sales
- Estimating charging behavior
Methods to Quantify Load Growth from EVs

- Electric vehicles represent a small (but growing) segment of auto sales... *and new load for utilities!*
- If approved/desired, what utility actions can be taken to further encourage sales?
 - Vehicle purchase rebates
 - Charging infrastructure investment
 - Consumer education/awareness

Nissan Leaf Rebate Colorado
Rebates and tax incentives for all-electric car
By: Paul | April 2, 2016 5:13 pm

Maryland's utilities propose spending $104 million on statewide electric-vehicle charging network

California Approves $768 Million for EV Infrastructure
By Brian Orion and Sarah Kozai on June 14, 2018
Posted in California, Climate Change
Methods to Quantify Load Growth from EVs

• Electric vehicles represent a small (but growing) segment of auto sales... *and new load for utilities!*

• If approved/desired, what utility actions can be taken to further encourage sales?
 – Vehicle purchase rebates
 – Charging infrastructure investment
 – Consumer education/awareness

• What methods exist for attributing EV load to each of these actions?
 – Estimating impact on EV sales
 – Estimating load profiles

 NREL has a model for that!
NREL uses ADOPT (Automotive Deployment Options Projection Tool) to predict consumer demand for different light-duty vehicle types in a given region based on technology evolution, demographic attributes, and policies.

*Can be used to test impact of utility actions on EV sales

PEV Charging Analysis – NREL Objective

Provide guidance on plug-in electric vehicle (PEV) charging infrastructure to regional/national stakeholders to:

- Reduce range anxiety as a barrier to increased PEV sales
- Ensure effective use of private/public infrastructure investments

High-resolution travel itineraries → Charging behavior simulation → Infrastructure requirements and load profiles

EVI-Pro and/or BLAST-V

Recent Studies
- California (2014)
 Seattle, WA (2015)
- Massachusetts (2017)
- Colorado (2017)
 National Analysis (2017)
 Columbus, OH (2018)
- California (2018)
 Maryland (forthcoming)
Unconstrained EV charging loads simulated in EVI-Pro

Simulate TOU rates shifting residential load into off-peak hours
Free Workplace Charging

“Business as usual” home dominant charging behavior

Simulate availability of free workplace charging shifting residential load into AM hours
Review of studies describing functional relationships, e.g.,

- **Chargers coverage – PHEV eVMT %**

 ![Graph showing the relationship between chargers coverage and PHEV eVMT %](image)

 Formulas:

 - $y = -0.2373x^2 + 0.4708x + 0.872$, $R^2 = 0.9991$
 - $y = -0.2552x^2 + 0.6525x + 0.4754$, $R^2 = 0.9277$
 - $y = -0.2515x^2 + 0.6623x + 0.2693$, $R^2 = 1$

 Informed by: Dong & Lin (2012); Bradley & Davis (2011)

- **BEV Range – % of Annual Travel**

 ![Graph showing the relationship between BEV range and % of annual travel](image)

 Formulas:

 - $y = 0.0759\ln(x) + 0.5654$, $R^2 = 0.9346$
 - $y = 0.1502\ln(x) + 0.1055$, $R^2 = 0.962$
 - $y = 0.2362\ln(x) - 0.3948$, $R^2 = 0.9719$

 Informed by: Wood et al. (2017)

- **PHEV range – eVMT %**

 ![Graph showing the relationship between PHEV range and eVMT %](image)

 Formulas:

 - $y = 0.5662x^{0.542}$, $R^2 = 0.9855$
 - $y = 1.2491x^{-0.545}$, $R^2 = 0.966$
 - $y = 0.6832x^{0.544}$, $R^2 = 0.9445$

 Informed by: Wood et al. (2015)

- **BEV Range – % eVMT enabled by DCFC**

 ![Graph showing the relationship between BEV range and % eVMT enabled by DCFC](image)

 Formulas:

 - $y = 1.6544x^{-0.516}$, $R^2 = 0.9335$
 - $y = 1.5531x^{-0.676}$, $R^2 = 0.9768$
 - $y = 198.17x^{-2.035}$, $R^2 = 0.9632$

 Informed by: Wood et al. (2015)
Willingness to pay for infrastructure & electrified mileage relationships

WTP decreases with the inverse of the number of stations

\[y = 32.074x^{-1.054} \]
\[R^2 = 0.7519 \]

Present value of reduced recharging time

WTP $ ranges per mile

Informed by: Melaina et al. (2013)

Informed by: Hidrue et al. (2011); Parson et al. (2014)

Informed by: Greene et al. (2017)
Summary

• Sophisticated, well-calibrated models exist for quantifying impacts of vehicle purchase incentives and infrastructure investment on electric vehicle sales and consumer charging behavior

• These models can be used by regulators to estimate the effectiveness of proposed utility actions towards the goal of increasing electrical load across individual service territories
This work was funded by the US Department of Energy Vehicle Technologies Office, the California Energy Commission, and Potomac Electric Power Company
Factors Affecting Consumer WTP for EVSE

Considerations
• Value (WTP) differs for PHEVs & BEVs.
• Consumer preferences for EVSE vary geographically.
PHEV Value of EVSE

PHEV WTP (at location j and vehicle i) for EVSE is represented as the value of energy savings from additional miles conducted in charge-depleting mode:

$$WTP_{ij} = \left[f(I_j, R_i) - f(0, R_i) \right] M_{ij} \left(p_{jG} e_{iGs} - (p_{jG} e_{iGd} + p_{jE} e_{iEd}) \right) D_{ij}$$

- **Observations**
 - WTP ↑ at a decreasing rate when EVSE ↑
 - WTP ↓ as when electric range ↑
 - WTP max at AER 20 due to energy consumption rates assumed

Figure:
PHEV drivers WTP for EVSE infrastructure as a function of range assuming 3/gallon for gasoline and 0.15/kWh for electricity
The contribution of EVSE to the value (utility) of a BEV is represented as the value of added miles, as for PHEVs, and additionally depends on the value of an enabled mile, ν, and the value, w, of reduced time to access a charger:

$$WTP = \left(a_0 + a_1 \ln \left(\frac{I_j}{X_j} \right) \right) \left(\frac{b_0}{R^b_i} \right) M_j \left(\nu_j - \left(w_j K \left(f^a_0 - f^{a_2} \frac{1}{R_i} \right) \right) \right) D_j$$

value per mile of additional enabled travel minus time cost of accessing EVSE

Observations

- WTP ↑ rapidly at first with ↑ EVSE, then diminishing returns
- WTP ↓ as when electric range ↑

Figure:
BEV WTP for EVSE infrastructure as a function of range
The contribution of EVSE, here assumed to be DCFC only, to the value (utility) of a BEV is represented as the value of added miles, here assumed:

\[
WTP = \left(a_0 + a_1 \ln(I_j) \right) \left(\frac{b_0}{R_i^{b_1}} \right) M_j \left(v_j - \left(w_j K (f_0^{a} - f_1^{a}) \frac{1}{R_i} \right) \right) - C(d_j, I_j, R_i, e_i) \right) D_j
\]

time cost of DCFC recharging BEV

Observations
- WTP ↑ at a decreasing rate as EVSE ↑
- WTP ↓ as when electric range ↑

Figure:
BEV WTP for EVSE infrastructure as a function of range assuming a value of $0.35 per enabled mile
Foundational Assumptions

- Future PEVs will be driven in a manner consistent with present day gasoline vehicles.
- Consumers will prefer to perform the majority of charging at their home location.
- Charging at work/public L2 and corridor/community DCFC stations will be used as necessary to maximize electric vehicle miles traveled (eVMT).
One of the fundamental inputs to EVI-Pro is geographically resolved, real-world travel data from the area of interest.

NREL has acquired numerous travel data sets for use in simulating consumer charging requirements by power level, location, and time of day.
Statewide Assessments in Massachusetts, Maryland, California, Colorado

Objective: To provide guidance on PEV charging infrastructure requirements to regional stakeholders.

Approach: Superimpose existing regional driving data with simulated PEVs and identify work/public EVSE requirements that meet anticipated consumer demand.

Significance & Impact
- State agencies in MA, MD, CA, and CO are using demand projections from EVI-Pro to assist in planning statewide EVSE growth supporting PEVs.
- Related organizations have inquired on the potential to run similar analysis in additional states.

NREL supported CEC in conducting statewide analysis.

California Plug-In Electric Vehicle Infrastructure Projections: 2017-2025
Future Infrastructure Needs for Reaching the State’s Zero-Emission-Vehicle Deployment Goals

Colorado Department of Transportation and Regional Air Quality Council supported NREL analysis of DCFC in CO.

Potomac Electric and Maryland Public Service Commission supporting NREL analysis of EVSE requirements to meet ZEV goal.
Committee on Energy Resources and the Environment
Electric Vehicle Cost-Benefit Analysis
The Maryland Example

NARUC 2018 Summer Policy Summit

Contact:
Paul Allen
1225 Eye Street, NW, Suite 200
Washington, DC 20005
+1 202 847 0088
pallen@mjbradley.com
What We Did

Estimated state-wide *net benefits* of high levels of plug-in vehicle (PEV) penetration between 2030 and 2050:

- PEV owner vehicle operating cost savings
- Utility customer savings on electric bills
- Societal benefits from GHG reductions

States include CT, MA, MD, NY, PA

Scenarios bracket short- and long-term state goals for PEV penetration and GHG reduction:

- 8-state ZEV MOU
- Economy-wide GHG reduction goals through 2050

State-specific analyses that account for differences in vehicle fleet, vehicle usage, energy costs, and grid characteristics
Current penetration is ~0.13%; under the ZEV MOU commitment, PEV penetration would need to be 6% - 7.5% in 2025.

Under the ZEV MOU scenario, there would be 1.3 million PEVs in MD in 2050.

For the 80x50 scenario, there would be 6 million PEVs in 2050.
PEV charging could add an additional 17% to electricity use in 2050.

- PEV charging would add an additional 3% electricity use by 2050 under the ZEV MOU scenario, and 17% under the 80x50 scenario.
Net revenue from PEV charging could reduce rates by over 3% in 2050

- Under the 80x50 scenario, net revenue from PEV charging could reduce electric rates by 3.5% in 2050 – savings the average MD household $109 per year
By 2050 cumulative PEV benefits could exceed $33 billion

64% will accrue to PEV owners from savings in vehicle costs

13% will accrue to utility customers from lower electric bills

23% will accrue to society from the value of GHG reductions

NPV Cumulative Net Benefits from Plug-in Vehicles in Maryland
(80x50 Scenario - Off-peak Charging - Low Carbon Electricity)

NPV based on 3% discount rate
PEVs provide similar levels of total societal benefits across all states

<table>
<thead>
<tr>
<th></th>
<th>NPV ANNUAL BENEFITS - $/PEV</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2030</td>
<td>2050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PEV Owner</td>
<td>Utility Customer</td>
<td>GHG Reduction</td>
<td>TOTAL</td>
<td>PEV Owner</td>
<td>Utility Customer</td>
<td>GHG Reduction</td>
</tr>
<tr>
<td>CT</td>
<td>$45</td>
<td>$73</td>
<td>$90</td>
<td>$208</td>
<td>$310</td>
<td>$62</td>
<td>$132</td>
</tr>
<tr>
<td>MA</td>
<td>$14</td>
<td>$90</td>
<td>$91</td>
<td>$195</td>
<td>$306</td>
<td>$81</td>
<td>$133</td>
</tr>
<tr>
<td>MD</td>
<td>$94</td>
<td>$80</td>
<td>$61</td>
<td>$230</td>
<td>$338</td>
<td>$58</td>
<td>$124</td>
</tr>
<tr>
<td>NY</td>
<td>$18</td>
<td>$166</td>
<td>$81</td>
<td>$265</td>
<td>$282</td>
<td>$112</td>
<td>$125</td>
</tr>
<tr>
<td>PA</td>
<td>-$37</td>
<td>$81</td>
<td>$60</td>
<td>$107</td>
<td>$210</td>
<td>$60</td>
<td>$96</td>
</tr>
</tbody>
</table>

- Utility customer benefits are among the highest in MD due to higher electricity rates and a lower percentage of utility revenue spent on generation & transmission
- PEV owner benefits vary among the states based on differences in electricity costs
Concord, MA
Headquarters
47 Junction Square Drive
Concord, MA 02145
USA
T: +1 978 369 5533
F: +1 978 369 7712

Washington, DC
1225 Eye Street, NW, Suite 200
Washington, DC 20005
USA
T: +1 202 525 5770
F: +1 202 315 3402

For more information, visit www.mjbradley.com
About M.J. Bradley & Associates, LLC

MJB&A, founded in 1994, is a strategic consulting firm focused on energy and environmental issues. The firm includes a multi-disciplinary team of experts with backgrounds in economics, law, engineering, and policy. The company works with private companies, public agencies, and non-profit organizations to understand and evaluate environmental regulations and policy, facilitate multi-stakeholder initiatives, shape business strategies, and deploy clean energy technologies.

About this presentation

This presentation is based on the results of five state-level analyses of plug-in electric vehicle costs and benefits for different states in the Northeast, including Connecticut, Maryland, Massachusetts, New York, and Pennsylvania. These studies were conducted by MJB&A for the Natural Resources Defense Council, to provide input to state policy discussions about actions required to promote further adoption of electric vehicles.

Summary reports for each state can be found here: http://bit.ly/2kJOfx0
Current PEVs, State-Level PEV & GHG Goals

Modeled PEV penetration rates bracket these short & long term goals

<table>
<thead>
<tr>
<th></th>
<th>2025 PEV Goal *</th>
<th>2050 GHG Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>150,000</td>
<td>-80% from 2001</td>
</tr>
<tr>
<td>MA</td>
<td>300,000</td>
<td>-80% from 1990</td>
</tr>
<tr>
<td>MD</td>
<td>300,000</td>
<td>-80% from 2006</td>
</tr>
<tr>
<td>NY</td>
<td>850,000</td>
<td>-80% from 1990</td>
</tr>
<tr>
<td>PA</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>TOT</td>
<td>1,600,000</td>
<td></td>
</tr>
</tbody>
</table>

For each state to meet its ZEV MOU commitments, PEV penetration would need to be 6% - 7.5% in 2025

For 8-state Zero Emission Vehicle Memorandum of Understanding (ZEV MOU). Other states are CA (1.5 million), OR (130,000), RI (40,000) and VT (30,000)
Projected PEV Purchase Costs

Modeled future PEV purchase costs based on two key parameters
- Battery costs ($/kWh)
- Electric drivetrain costs ($/kW)

Battery size based on BEV200 and PHEV50
Electric drive train size (kW) based on current PEV models
Future battery & drivetrain costs based on DOE EV Everywhere goals and recent Bloomberg projections

PEVs projected to still be more expensive to buy than gasoline vehicles through 2050, but incremental costs will be more than offset by fuel and maintenance savings
Major Assumptions

- Baseline is based on current light-duty fleet in each state, and state projections for future vehicle and VMT growth
- Future PEVs assumed to include both plug-in hybrid (PHEV) and battery-electric (BEV) cars and light trucks
 - PHEV/BEV ratio based on current fleet in each state
 - PEVs assumed to be mostly cars in 2030, with increasing percentage light trucks in later years, especially under 80x50 scenario
- Future energy costs (gasoline, electricity) based on regional projections from Energy Information Administration (EIA)
- Energy use by gasoline cars (baseline) and PEVs consistent with 2015 NRDC/EPRI modeling, and reflect EPA/DOT fuel economy standards (CAFE) through 2025 model year
 - For PEVs added additional energy to cover winter cabin heating
- PEV GHG emissions based on EIA projections for future grid carbon intensity (baseline), and a “low carbon” scenario in which grid emissions are reduced 80% by 2050
- Evaluated PEV charging load for both “baseline” and “off-peak” charging
Committee on Energy Resources and the Environment