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	The	MIT	U"lity	of	the	Future	Study…	
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…	examines	how	distributed	energy	resources	(DERs)	
are	changing	the	provision	of	electricity	services,	with	
a	focus	on	the	USA	&	Europe	over	the	next	decade	&	
beyond	

…	&	makes	policy,		regulatory	and	market	
recommenda"ons…		

…	to	facilitate	an	efficient,	low	carbon	emission	energy	
system	that	encourages	op"mal	u"liza"on	of	
resources	whether	centralized	or	decentralized.	

	



“As	for	the	future,	your	role	is	not	to	
foresee,	but	to	enable	it”	

	

Antoine	de	Saint	Éxupéry		

3	



•  The	study	presents	a	framework	for	proac"ve	
regulatory,	policy	&	market	reforms	that	is:		
•  robust	to	the	uncertain	changes	now	underway		
•  and	capable	of	facilitaLng	the	emergence	of	an	
efficient	porPolio	of	resources,	both	distributed	
and	centralized	

	

•  The	report	disLlls	results	and	findings	from	more	
than	two	years	of	primary	research,	a	review	of	the	
state	of	the	art,	and	quan"ta"ve	modeling	&	
analysis	

	

	Predic"ng	the	future?	Rather	a	toolkit	
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The	power	sector	is	changing…	
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Consumers	have	unprecedented	
choice	regarding	how	they	manage	

their	power	supply	
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The	U.S.	installed	4,143	MWdc	of	solar	PV	in	Q3	2016,	
increasing	99%	over	Q2	2016	and	191%	over	Q3	2015.	

	This	is	the	largest	quarter	ever	for	the	U.S.	solar	
industry.	



Customers	respond	to	price	signals	–	and	can	act	very	fast!	
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DERs	could	deliver	large	savings	by	
improving	the	u"liza"on	of	
electricity	infrastructure	
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“Over	the	last	three	years	from	2013	–	2015	
on	average,	the	top	1%	most	expensive	
hours	accounted	for	8%	($680	million)	of	

MassachuseEs	ratepayers’	annual	spend	on	
electricity.	The	top	10%	of	hours	during	

these	years,	on	average,	accounted	for	40%	
of	annual	electricity	spend,	over	$3	billion.”	

	
Source:	“State	of	Charge:	Massachuseos	Energy	
Storage	IniLaLve,”	MA	DOER	and	MassCEC		

November	2016		
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ConEd	is	deferring	a	$1.2B	substaLon	
investment	for	$200M	with	a	porrolio	of	DERs	



Lack	a	comprehensive	system	of	
efficient	prices	&	regulated	charges	

for	electricity	services	
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Many	opportuni"es	to	deliver	greater	
value	are	lep	untapped		
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Flexible	demand	&	smart	thermostats	are	only	useful	
if	able	to	respond	to	changing	system	condi"ons	



Our	key	recommenda"ons	
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1	
“Create	a	comprehensive	&	efficient	

system	of	prices	&	charges”	
	

The	only	way	to	put	all	resources	–
centralized	&	distributed–	on	a	level	
playing	field	and	achieve	efficient	

operaLon	and	planning	in	the	power	
system	is	to	drama"cally	improve	prices	
and	regulated	charges	for	electricity	

services.		
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2	
“Enhance	distribuNon	regulaNon”	

	

The	regula"on	of	distribu"on	u"li"es	
must	be	improved	to	enable	the	
development	of	more	efficient	&	

innovaLve	distribuLon	uLlity	business	
models	
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3	
“Rethink	industry	structure	to	minimize	

conflicts	of	interest”	
	

The	structure	of	the	electricity	industry	
should	be	carefully	evaluated	to	minimize	

potenLal	conflicts	of	interest	
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4	

“Allow	DERs	parNcipate	in	wholesale	
markets”	

	

Wholesale	market	design	should	be	
improved	to	beoer	integrate	distributed	
resources,	reward	greater	flexibility,	and	

create	a	level	playing	field	for	all	
technologies			
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“Carefully	evaluate	the	economic	
opportuniNes	and	costs	of	DERs”	

	

Beoer	uLlizaLon	of	exis"ng	assets	and	smarter	
energy	consumpLon	hold	great	potenLal	for	

cost	savings.		
Economies	of	scale	sLll	maoer,	and	the	

distributed	deployment	of	solar	PV	or	energy	
storage	is	not	cost-effecLve	in	all	contexts	and	

locaLons		
27	



How	to	do	it?	
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1	

Create	a	comprehensive	&	efficient	
system	of	prices	&	charges	

29	



Create	a	comprehensive	&	efficient	system	
of	prices	&	charges	(Like	a	nervous	system,	
reaching	every	corner	of	the	power	system)	
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Any	cost-reflec"ve	component	of	prices	&	charges	
should	be	exclusively	based	on	the	individual	injec"on	
&	withdrawal	profiles	at	the	network	connecLon	point	

&	should	be	symmetrical.	
	

This	requires	the	use	of	advanced	meters	

31	

Power Flows

Meter DERs and Loads



•  Reflect	"me	differen"a"on	in	the	energy	charges	

	Let’s	do	it	one	step	at	a	"me…	
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•  Reflect	"me	differen"a"on	in	the	energy	charges	

•  Apply	forward-looking	peak-coincident	capacity	
charges	for	networks	&	firm	generaLon	capacity	(if	
this	is	the	case)	

	Let’s	do	it	one	step	at	a	"me…	

36	



Example	cost-reflecLve	tariff	for	Westchester,	New	York;	Four	days	in	July.	
Source:	HunLngton	&	Jenkins,	MIT	UNlity	of	the	Future	study.		

Add	peak-coincident	consumpLon	and	injecLon	
capacity	charges	for	network	&	firm	genera"on	
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Example	cost-reflecLve	tariff	for	Westchester,	New	York;	Four	days	in	July.	
Source:	HunLngton	&	Jenkins,	MIT	UNlity	of	the	Future	study.		

Add	peak-coincident	consumpLon	and	injecLon	
capacity	charges	for	network	&	firm	genera"on	
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Example	cost-reflecLve	tariff	for	Westchester,	New	York;	Four	days	in	July.	
Source:	HunLngton	&	Jenkins,	MIT	UNlity	of	the	Future	study.		

Add	peak-coincident	consumpLon	and	injecLon	
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•  Reflect	"me	differen"a"on	in	the	energy	charges	

•  Apply	forward-looking	peak-coincident	capacity	
charges	for	networks	&	firm	generaLon	capacity	(if	
this	is	the	case)	

•  Progressively	increase	the	loca"onal	component	of	
prices	&	charges		

	Let’s	do	it	one	step	at	a	"me…	
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Bidding	zones	in	European	market	coupling	



Energy	prices	at	transmission	level	may	vary	
significantly	if	there	are	binding	network	constraints	

Wholesale	LMP	varia"on	across	more	than	11,000	PJM	nodes	on	July	19,	2015,	at	4:05	pm	



Gewng	deep	into	distribuLon	
(just	losses)	



Gewng	deep	into	distribuLon	
(losses	&	network	constraints)	



And	the	most	important	one…	
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•  Reflect	"me	differen"a"on	in	the	energy	charges	

•  Apply	forward-looking	peak-coincident	capacity	
charges	for	networks	&	firm	generaLon	capacity	(if	
this	is	the	case)	

•  Progressively	increase	the	loca"onal	component	of	
prices	&	charges		

•  Policy	&	residual	network	costs	should	be	charged	
minimizing	distor"on	of	cost-reflecLve	signals	

	Let’s	do	it	one	step	at	a	"me…	
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Breakdown of residential electricity bills in different jurisdictions in 
2014-2015 

Policy	costs	&	residual	network	costs	should	not	be	recovered	
with	volumetric	charges	($/kWh).	We	recommend	a	fixed	

annual	charge	distributed	in	monthly	installments.				



And	as	a	consequence…	
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•  Reflect	"me	differen"a"on	in	the	energy	charges	

•  Apply	forward-looking	peak-coincident	capacity	
charges	for	networks	&	firm	generaLon	capacity	(if	
this	is	the	case)	

•  Progressively	increase	the	loca"onal	component	of	
prices	&	charges	

•  Policy	&	residual	network	costs	should	be	charged	
minimizing	distor"on	of	cost-reflecLve	signals	

•  Reconsider	which	costs	are	included	in	the	
electricity	tariff	if	inefficient	grid	defec"on	is	a	
serious	threat	

	Let’s	do	it	one	step	at	a	"me…	
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Depending	on	the	seriousness	of	the	threat	of	grid	
defec"on,	which	costs	are	included	in	the	

electricity	tariff	must	be	carefully	considered	
	



How	important	is	to	increase	
temporal	&	spa"al	“granularity”?	

51	



Granularity	maXers:	progressively	improving	
tariffs	can	unlock	efficient	consumpLon,	value	

DERs,	and	lower	cost	of	power	systems.	
	

A	case	study	of	a	residenLal	household	in	Westchester,	NY	with	flexible	air	
condiLoning	responding	to	different	tariff	schedules…		



Granularity	maXers:	progressively	improving	
tariffs	can	unlock	efficient	consumpLon,	value	

DERs,	and	lower	cost	of	power	systems.	
	

A	case	study	of	a	residenLal	household	in	Westchester,	NY	with	flexible	air	
condiLoning	responding	to	different	tariff	schedules…		



Too	much	complexity	for	the	small	&	
medium	customers?	
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How	much	should	the	toaster	know?	
Is	it	worth	sending	prices	&	charges	to	it?	



2	
Enhance	distribu"on	regula"on		
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	From	the	MIT	“Future	of	Solar	Study”	



•  Forward-looking,	mul"-year	revenue	
trajectory	with	profit	sharing	mechanisms	

	An	enhanced	distribu"on	business	model	
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•  Forward-looking,	mul"-year	revenue	
trajectory	with	profit	sharing	mechanisms	

•  “State	of	the	art”	regulatory	tools	to	manage	
uncertainty	

	An	enhanced	distribu"on	business	model	
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•  Forward-looking,	mul"-year	revenue	
trajectory	with	profit	sharing	mechanisms	

•  “State	of	the	art”	regulatory	tools	to	manage	
uncertainty	

•  Outcomes-based	performance	incenLves	

	An	enhanced	distribu"on	business	model	
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•  Forward-looking,	mul"-year	revenue	
trajectory	with	profit	sharing	mechanisms	

•  “State	of	the	art”	regulatory	tools	to	manage	
uncertainty	

•  Outcomes-based	performance	incenLves	

•  IncenLves	for	long-term	innova"on	

	An	enhanced	distribu"on	business	model	
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Widespread	connecLon	of	distributed	
energy	resources,	smart	appliances,	&	
more	complex	electricity	markets	

increase	the	importance	of	
cybersecurity	&	heightens	privacy	

concerns	
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There	is	no	silver	bullet	but	several	useful	pro-
ac"ve	measures	should	be	adopted	

63	

•  Develop	risk	management	culture	
•  Share		informa"on	about		cyber		threats	
•  Deploy	skilled	teams	to		detect		and		respond			

to			anomalous			cyber	acLvity	
•  Increase	system	resilience		
•  Adopt	advanced	cybersecurity	technologies	



3	
Rethink	electricity	industry	structure	

to	minimize	conflicts	of	interest	
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“Market	pla<orms,	network	providers,	and	
system	operators	perform	three	criNcal	
funcNons	that	sit	at	the	center	of	all	
transacNons	in	electricity	markets.”	

	

“A	data	hub	or	data	exchange	may	
consNtute	a	fourth	criNcal	power	system	

funcNon…”		
	



Establish	independence	between	the	
DSO	&	agents	performing	ac"vi"es	in	

markets	and	
if	independence	is	legal	or	func"onal,	

apply	significant	regulatory	oversight	and	
transparent	mechanisms	to	provide	

services		
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4	

Allow	DERs	par"cipate	in	wholesale	
markets		

67	



•  Wholesale	markets	should	enable	transac"ons	
to	be	made	closer	to	real	"me		

	How	to	remove	inefficient	barriers?	

68	



•  Wholesale	markets	should	enable	transac"ons	to	
be	made	closer	to	real	"me		

•  Wholesale	market	rules	(such	as	bidding	formats)	
should	be	updated	to	reflect	the	operaLonal	
constraints	of	new	resources	

	How	to	remove	inefficient	barriers?	
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•  Wholesale	markets	should	enable	transac"ons	to	
be	made	closer	to	real	"me		

•  Wholesale	market	rules	(such	as	bidding	formats)	
should	be	updated	to	reflect	the	operaLonal	
constraints	of	new	resources	

•  Aligning	reserves	&	energy	markets	&	establish	the	
flexibility	requirements	for	parLcipaLon	

	How	to	remove	inefficient	barriers?	
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•  Wholesale	markets	should	enable	transac"ons	to	
be	made	closer	to	real	"me		

•  Wholesale	market	rules	(such	as	bidding	formats)	
should	be	updated	to	reflect	the	operaLonal	
constraints	of	new	resources	

•  Aligning	reserves	&	energy	markets	&	establish	the	
flexibility	requirements	for	parLcipaLon	

•  Minimize	the	interference	of	support	mechanisms	
for	clean	technologies	in	electricity	markets	

	How	to	remove	inefficient	barriers?	
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5	
Unlock	the	individual	value	of	each	
DER	&	be	aware	of	their	loca"onal	
component	&	economies	of	scale	
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Understand	the	loca"onal	value	of	
services	provided	by	DERs	
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•  Energy 

•  Network constraint 
mitigation 

•  Firm generation capacity 
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 Locational  Non-locational 

•  Energy 
•  Network capacity margin 
•  Network constraint mitigation 
•  Power quality 
•  Reliability and resiliency 
•  Black-start  

•  Firm generation capacity  
•  Operating reserves 
•  Price hedging 

•  Land use  
•  Employment   
•  Premium values* 

•  Emissions mitigation 
•  Energy security  

* Private values; do not need to be reflected in prices and charges 

Electricity	services	values	
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For	DERs	that	can	be	deployed	at	different	
scales	(e.g.	solar	PV,	storage)…	

Loca"onal	value	competes	with	
economies	of	scale	
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EsLmated	Economies	of	Unit	Scale	for	Fixed-Llt	Solar	
PV	Systems	
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Incremental unit cost relative to 
10-100 MW system  

2015 annual costs 
Source: Author’s estimates, forthcoming (part of MIT Utility of the Future Study) 



Source: Author’s estimates, forthcoming (part of MIT Utility of the Future Study) 
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EsLmated	Economies	of	Unit	Scale	for	Lithium	Ion	
Energy	Storage	Systems	

1:2 power/energy ratio; 2015 annual costs 
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LocaLonal	Value	and	Incremental	Unit	Cost	of	
Distributed	Solar	PV:		Long	Island,	New	York	
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LocaLonal	Value	and	Incremental	Unit	Cost	of	
Distributed	Solar	PV:		Mohawk	Valley,	New	York	

Incremental Unit Costs 



•  can	be	implemented	with	exisLng	
technology	&	reasonable	regulatory	
measures,	

•  creates	the	condiLons	for	centralized	and	
distributed	resources	to	compete	and	
collaborate	on	a	level	playing	field	

•  &	provides	a	framework	that	will	enable	an	
efficient	outcome	regardless	of	how	
technologies	or	policy	objec"ves	develop	in	
the	future.		

	In	summary,	what	the	study	proposes…	
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Thank	you	
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The	report	has	been	released	today	(Dec-15)	
hop://energy.mit.edu/uof		

Or	just	browse	“MITEI	uLlity	of	the	future”			
	


