

Review of Solar PV Cost Studies: Exploring Economies of Scale

NRRI Report No. 14-05

www.nrri.org

Tom Stanton

Principal Researcher – Energy and Environment
National Regulatory Research Institute
tstanton@nrri.org

July 2014

Solar PV economies of scale review

- Questions:
 - Are there important economies of scale in solar-PV?
 - Will existing economies of scale stay the same or change as PV technologies and supply-chains gain experience?
 - Do existing policies distort PV markets in unintended or undesirable ways because only some system types or sizes are favored?
 - Given limited funds for PV financial incentives, what policy types and program designs and features will best achieve public policy goals, while minimizing any negative spin-off effects?

12-Jul-14 T. Stanton, NRRI

Major research findings

- LCOE studies consistently show economies of scale: larger systems are cheaper per unit of capacity
 - The smallest systems sometimes cost roughly twice as much
 - Cost differences have been persistent over time
- LCOE studies are difficult to compare
- PV policies, incentives, and subsidies often differentiate by system size
- PV business models vary because of complex interactions among policies and incentives
- Other analysis techniques are needed to get a complete picture of solar PV costs and benefits (e.g., VOS, LACE, CONE, DMP)

12-Jul-14

Major differences in PV LCOE studies

- Existing studies ask and answer different questions:
 - What regions or service territories are included in the analysis?
 - How mature and competitive are the region's solar markets?
 - What are the region's insolation values?
 - ▼ What are the region's utility rates and tariffs, financial incentives?
 - What vintage(s) of system costs are modeled?
 - Are financial incentives, subsidies, and REC sales included?
 - Are interconnection, T&D, and grid integration costs included?
 - **▼** If yes, are they generic or specific?
 - Are environmental and social costs and benefits considered?
 - Are sensitivity analyses reported?

Factors influencing economies of scale

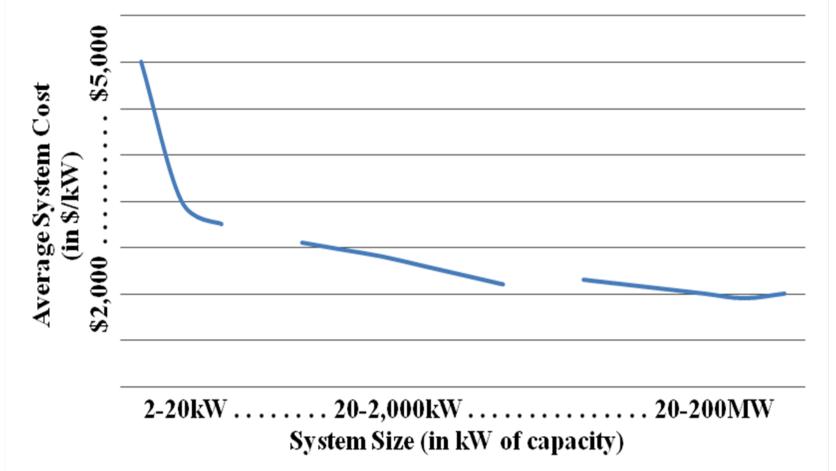
- Modules (roughly 40-50% of total cost)
 - Subject to "Swanson's Law" manufacturing learning-curve effects and economies of scale, and through continuing technology improvements
- 2 Balance of system hardware (roughly 1/4 to 1/3 of cost)
 - Mounting systems, inverters and power electronics, switches and wiring – also subject to Swanson's Law?
- 3 Soft costs (roughly, anywhere from 1/4 to 1/2 of cost)
 - Marketing, customer acquisition, siting, permitting, regulatory and contractual work, financing, insurance, and property taxes

12-Jul-14


nrri Average cost make-up of different size PV systems

Components	Utility-Scale Fixed Ground Mount	Utility-Scale 1-Axis Tracking Ground Mount	Commercial Rooftop	Residential Rooftop
Solar PV modules	51%	44%	45%	38%
Inverter	8%	7%	8%	7%
Installation materials	10%	10%	14%	8%
Electrical & hardware labor	11%	13%	7%	11%
Supply chain costs	7%	7%	14%	17%
Permitting and commissioning	<1%	<1%	4%	3%
Other	13%	20%	10%	16%
Total estimated installed cost in second half 2010	\$3.80/Wp-dc	\$4.40/Wp-dc	\$4.59/Wp-dc	\$5.71/Wp-dc

Source: Adapted from Goodrich, James, and Woodhouse, 2012.



From California data: Larger systems consistently cost less

General trends in reported PV cost

Source: Author's construct based on general observations from all reviewed studies, adapted from Goodrich, James and Woodhouse, 2012, Figure 4.

12-Jul-14

T. Stanton, NRRI

Common policy/market distortions

- Participation is limited to only certain system types and sizes
- Incentives apply unequally or only to certain types and sizes
- Interconnection rules and standards favor smaller systems
- Net metering and aggregated or virtual net metering are usually subject to system capacity limits
- Tax codes and some incentives treat systems differently by ownership type and size
- Several states have portfolio carve-outs requiring specific percentages of solar or distributed generation, other states have extra credit for solar generation