

Combined Heat and Power Going Forward: What Can State Utility Commissions Do? NRRI Report No. 14-06 www.nrri.org

Ken Costello

Principal Researcher – Energy & Environment National Regulatory Research Institute kcostello@nrri.org July 2014

Features of CHP Systems

- Two outputs with a single fuel input
- Two broad categories: topping and bottoming cycle
- Form of distributed generation
- Capacity to use different fuels
- Optimal application dependent upon host's energy profile
- Site-specific economics
- Economies of scale
- Mature technology
- Energy-efficient and clean energy resource
- Concentration in relatively few areas of the country

Source: U.S. Department of Energy, and U.S. Environmental Protection Agency, August 2012, 7.

12-Jul-14

K. Costello, NRRI

nrri Potential Benefits from CHP

- Higher overall energy efficiency than production of electricity and steam in separate facilities
- Energy-cost savings for the host
- Reduction in lost electricity from T&D
- Environmental benefits
- Improved power resiliency, reliability and security
- Positive macroeconomic effects
- Economic and environmental advantages over some other generation technologies

NTTI Benefits of CHP over Solar and Wind

Output	10 MW CHP	10 MW PV	10 MW Wind
Annual Capacity Factor	85%	25%	34%
Annual Electricity Production	74,446 MWh	21,900 MWh	29,784 MWh
Annual Useful Heat	103,417 MWh _t	None	None
Footprint Required	6,000 sq ft	1,740,000 sq ft	76,000 sq ft
Capital Cost	\$20 million	\$48 million	\$24 million
Annual National Energy Savings	343,787 MMBtu	225,640 MMBtu	306,871 MMBtu
Annual National CO ₂ Savings	44,114 Tons	20,254 Tons	27,546 Tons

Source: ICF International, May 2013, 22.

12-Jul-14

Different Gas-Fired CHP Technologies

Gas turbines

- Combined cycle
- Combustion turbines
- Boiler/steam turbines
- Reciprocating engines
- Microturbines
- Fuel cells

Spotty History of CHP

- Early history of U.S. electricity industry
- Central station era
- PURPA
- Early 21st century
- Last few years and current status

Irri Favorable Prospects for CHP

- Technical potential vs. economic feasibility
- Abundance of natural gas
- Push by the Obama Administration
- Increased recognition at the state level of CHP technology as an energy-efficient and clean-energy resource
- Increased concern about long and costly outages on the central grid
- MACT regulations

nrri

Several Factors Affecting the Economics of CHP

- Returns from CHP relative to competing investments
- Payback period
- Electricity and natural gas prices
- Thermal energy requirements of host
- Initial investment costs
- Revenues from electricity sales
- Standby rates
- Interconnection rules
- Environmental regulations

Obstacles to CHP Growth

- What are they?
- How serious are they?
- What should policymakers do, if anything, to mitigate them?
- Distinction between *"market/regulatory failures"* and *"normal market barriers"* (Examples)

Market Barriers

- Required short payback period
- Uncertain rate of return
- Inadequate information about CHP technologies
- Inertia
- Myopic behavior by potential investors
- High initial investment costs
- High transaction costs

Which of these require governmental intervention?

Regulatory Practices as Potential Barriers

- Benefit-cost tests for evaluating CHP
- Interconnection rules
- Standby rates
- Existing ratemaking practices
- Characterization of CHP as an energy resource
- Constraints on utility activities

Which of these prevent development of costeffective CHP investments?

Five Basic Questions for Commissions

- What should society expect from electric utilities in accommodating or supporting CHP?
- How should electric utilities meet those expectations?
- What can commissions do to require or encourage utilities to meet these expectations?
- What role should gas utilities play in support of CHP?
- What can commissions do to change their present policies and practices to assure investments in cost-effective CHP?

Final Thoughts for Commission Consideration

- The market should be the prime driver of CHP investments
- "Leveling the playing field" among generation alternatives should be the major regulatory goal
- Commissions should support subsidies, favorable treatment to CHP only under restrictive conditions; namely, the presence of serious market/regulatory failures for which the benefits of their mitigation exceed the costs