

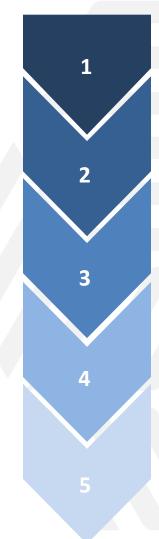
Planning for Operational Coordination

Paul De Martini

Newport Consulting

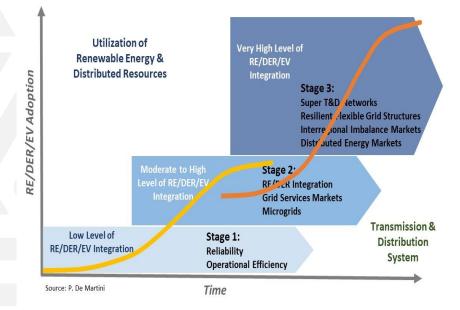
NCEP 2021 Annual Meeting on Coordinated Electricity Planning September 15, 2020

Comprehensive System Planning



System Planning Increasingly Interdependent Upon Bulk Power Use of DER and Local Sustainability & Resilience Plans

Operational Coordination Architecture Model (OCAM)



- 1. Identify Objectives & Constraints
- 2. Identify Services & Operational Mechanisms
- 3. Develop Coordination Structures & Reconcile Coordination Conflicts
- 4. Document Existing/Emerging Industry Structure
- 5. Develop Transition Plan

1. Identify Objectives & Constraints

- Identify state & federal objectives, policy and regulations driving industry structural changes
- Identify scale and timing factors
- Identify any institutional and practical constraints

2. Identify Services & Operating Mechanisms

- GRID MODERNIZATION LABORATORY CONSORTIUM U.S. Department of Energy
- "Value stacking" will involve various bundles of services for specific applications at different tiers in the system
- These combinations that require deeper examination in relation to the interrelationship of operating mechanisms and related actors and operational interchanges.
- This is an essential perquisite to assessing structural changes.

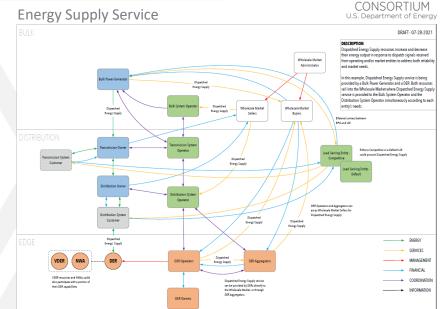
	Bulk System	Bulk <-> Dist	Dist System	Edge <-> Dist	Edge<->Edge	Edge (BTM)
Services						
Energy Supply						
Energy Transport						
Energy Storage						
Managed Energy Consumption						
Frequency Regulation						
Voltage/Reactive Power Regulation						
Energy Reserves						
Resilience						

Value Stack Bundle Examples

Virtual Power Plant

- Edge:
 - Autonomous energy supply
- Edge to Distribution
 - Dispatched load reduction services
 - Autonomous voltage/Var services
- Bulk Power
 - Dispatched energy supply
 - Dispatched capacity service
 - Dispatched frequency service

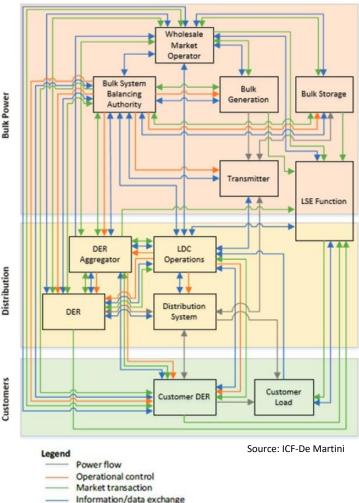
Community Microgrid


- Edge:
 - Autonomous energy supply
- Edge to Edge:
 - Dispatched energy supply
 - Voltage regulation
 - Resilience service
- Edge to Distribution:
 - Dispatched Capacity services
- Bulk Power:
 - Dispatched Energy Supply

- Real time operating mechanisms for each service at and between each tier (bulk power, distribution, edge) should be identified
- Various Operating Mechanisms to initiate response
 - Price based mechanisms (e.g., real-time market price, dynamic rate, etc.)
 - Direct control mechanisms (e.g., AGC, traditional demand response, etc.)
 - Autonomous mechanisms (e.g., droop control, advanced inverter functions – volt/watt, microgrid islanding, etc.)
 - Independent operation (e.g., BTM solar PV output)

3. Develop Coordination Structures & Resolve Operational Conflicts

- Develop coordination structures for each discrete service associated with each operating mechanism
- Identify actors, information and timing requirements
- Evaluate the resulting "stack" of structures to resolve any conflicts


Distribution Balancing Service

bit results for the state of th

4. Document Existing/Emerging Structure

- Important to identify the current or emerging industry structure
- Structural diagram identifies the interrelationship of each of the principal entities as well as the roles and responsibilities
- Example shown includes power flow, operational control, market transactions and information/data exchange layers
- Additional layers can include regulatory and market oversight

Utilization of distributed energy resources across the power system requires coordinated policy, regulation and planning

- What are the DER services anticipated over the next 10+ years at each tier of the power system?
- What operating mechanisms are appropriate given the operational requirements (e.g., timing) for each service?
- What operational coordination conflicts arise when "stacking" services from the same resource or aggregated resources (e.g., pricing vs direct control vs autonomous vs independent)?
- What level of regulatory coordination & oversight is needed to ensure safe, effective operation across edge to bulk power system?

Thank you

Paul De Martini paul@newportcg.com