Staff Electricity Subcommittee
Advancing Electrification: How to Ensure it is Efficient and Beneficial
Moderator: Michael Marchand, Arkansas Staff

Panelists: Arshad Mansoor, EPRI and Ken Colburn, RAP
Efficient Electrification

What is the Opportunity?

2018 NARUC Winter Policy Summit
February 11–14, 2018

Dr. Arshad Mansoor
Senior Vice President
EPRI
The Integrated Energy Network – Efficient Electrification

Efficient Electrification is a Key Enabler for the Integrated Energy Network
Winter Olympics 2018

Clean Air… Clear Choice
Paper Mill – Infrared Drying

Clean Air...
Less Water...
Clear Choice
Indoor Agriculture

Clean Air... Less Water... Less Land... Less Pesticide... More Yield... Clear Choice
Efficient Electrification – Win…Win…Win

<table>
<thead>
<tr>
<th>METRIC OPTIONS</th>
<th>BENEFIT</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CUSTOMER</td>
<td>UTILITY</td>
<td>SOCIETY</td>
<td></td>
</tr>
<tr>
<td>Economic Efficiency</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>• It costs less</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>• Uses fewer Btu overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economic Development</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>• Jobs creation and retention</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Development of community assets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>• Emissions reduction, CO₂ savings, water savings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid Flexibility</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Productivity Improvements</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>• Plant output increases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Reduction in energy intensity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Improved product quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worker Safety Improvements</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>• Reduced lost time and accidents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EPRI National Electrification Assessment

EPRI MODEL INPUTS

<table>
<thead>
<tr>
<th>SCENARIO</th>
<th>VARIABLES</th>
<th>TECHNOLOGY</th>
<th>FUEL COST</th>
<th>POLICY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSERVATIVE</td>
<td></td>
<td>Slower Technology Change</td>
<td>Flat Fuel Prices</td>
<td>No Additional CO₂ Policy</td>
</tr>
<tr>
<td>REFERENCE</td>
<td></td>
<td>Rapid Technology Change</td>
<td>Rising Fuel Prices</td>
<td>No Additional CO₂ Policy</td>
</tr>
<tr>
<td>PROGRESSIVE</td>
<td></td>
<td>Rapid Technology Change</td>
<td>Rising Fuel Prices</td>
<td>40% Economy-Wide CO₂ Emissions Reductions by 2050</td>
</tr>
<tr>
<td>TRANSFORMATION</td>
<td></td>
<td>Rapid Technology Change</td>
<td>Rising Fuel Prices</td>
<td>80% Economy-Wide CO₂ Emissions Reductions by 2050</td>
</tr>
</tbody>
</table>

MODEL OUTPUTS

- Electric Generation Mix
- Economy-Wide CO₂ Emissions
- Electric and Non-Electric End-Use Energy Demands
Scenario Impacts on Final Energy, CO$_2$, and Electric Load: Between 2015 and 2050

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Total Final Energy</th>
<th>Economy Wide</th>
<th>Electric Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSERVATIVE (21% & 32%)</td>
<td>20%</td>
<td>19%</td>
<td>24%</td>
</tr>
<tr>
<td>REFERENCE (21% & 36%)</td>
<td>22%</td>
<td>20%</td>
<td>32%</td>
</tr>
<tr>
<td>PROGRESSIVE (21% & 39%)</td>
<td>27%</td>
<td>57%</td>
<td>35%</td>
</tr>
<tr>
<td>TRANSFORMATION (21% & 47%)</td>
<td>32%</td>
<td>67%</td>
<td>52%</td>
</tr>
</tbody>
</table>
US Electrification Assessment…Key Insights and Actions

Customers Increase Reliance on Electric End-Uses
- Driven by economic technology adoption and consumer choice; accelerated by policy and regulatory constructs

Final Energy Consumption Decreases
- Efficient electrification, coupled with continued efficiency gains, leads to a decline in total energy consumption

Natural Gas Use Increases
- Both for end-use applications across the economy and for electric generation

Air Emissions Decrease
- GHG emissions reduced as generation continues to be clean and electrification growth increases

Accelerate Grid Modernization
- Increasing electrification will require a more reliable, resilient and flexible electricity grid

Optimize Grid Operations and Planning
- Planning and operation of the grid must evolve with connected efficient electric technologies as grid resource

Pursue Market Transformation
- Fuel neutral energy efficiency policy, innovative rate structure, public charging infrastructure and customer awareness and education

Prioritize Technology Innovation
- Innovation in energy storage, power electronics, and materials key to advance efficient electrification and helping to manage affordability
OBJECTIVES & SCOPE
Integrated analysis of customer energy demand and the electric power system combined with detailed technology assessments to support utility decision making.

VALUE
- Actionable research on renewable targets, air quality attainment, energy market reforms, and CO₂ mitigation
- Technology assessment on renewables integration, flexible operations, and distributed energy resources
- Analytics to inform your understanding of how increased electrification will impact your evolving power system
- Unbiased information to inform industry stakeholders on the benefits/costs of electrification for society and customers

CONTACT
Francisco de la Chesnaye
202.293.6347 | fdelachesnaye@epri.com
Allen Dennis
865.218.8192 | adennis@epri.com

Task 1: Energy System Assessment (2020 to 2050)
Task 2: Environmental Assessment (2020 to 2050)
Task 3: Transmission Assessment (selected years)
Task 4: Utility-level Assessment and Implementation Plan (selected years)

State-Level Assessment
Utility-Level Assessment
Coming in 2018...Efficient Electrification Benefit/Cost Assessment Methodology

Environmental Impacts
- GHG Emissions
- Air Quality
- Water
- Land
- Other Resources

Economic Impacts
- Productivity
- Product Quality
- Worker Health and Safety
- Occupant Comfort
- Cost of Service

Integrated Energy Network Infrastructure
- Avoided Costs
- Grid Flexibility
- Reliability

Leverage Framework of Standard Tests for Energy Efficiency Cost-Effectiveness

SAVE THE DATE
AUGUST 20–23, 2018 LONG BEACH, CALIFORNIA

ELECTRIFICATION 2018 CONFERENCE TRACKS

Electric Transportation (20%)
Industrial Electrification (20%)
Residential and Commercial Electric Technologies (20%)
Understanding the Costs and Benefits of Electrification (17%)
Grid Modernization for and Electrified Economy (9%)
The Policy and Regulatory Landscape for Electrification (14%)
Breakthrough Technologies (9%)

Scan here for the latest EPRI Efficient Electrification newsletter
Together…Shaping the Future of Electricity
Advancing Electrification: Ensuring It’s Beneficial

NARUC Staff Subcommittee on Electricity

07 February 2018
Disruptive Forces Transforming Electricity

Aggregation, Digitization, Ability to Shape Load

Artificial Intelligence, Deep Machine Learning

Information & Network Effects

- Grid Data Explosion
- Renewable Explosion
- Heat Pumps
- Storage & EV Explosion

Adoption

Time

- Solar grid parity
- Wind grid parity
- Smart meter roll-out
- PMUs
- $150/kWh
- We are here

Source: Chandu Visweswariah, Utopus Insights Inc.
Electrification is Well Underway

Figure 1: Annual global light duty vehicle sales

Source: Bloomberg New Energy Finance

Photo credits: Nest and Dennis Schroder, NREL
But, Not All Electrification is Created Equal

- It’s all about load growth, right?
- Brattle: “Utility sales could nearly double by 2050”!
What Makes for **Beneficial** Electrification (BE)?

Three explicit criteria:

1. Saves Customers Money Long-Term; New Services
2. Reduces Environmental Impacts
3. Enables Better Grid Management
Metrics Matter...

<table>
<thead>
<tr>
<th>Emissions Efficiency</th>
<th>Marginal Resource on System to Serve Load</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Existing Fuel #CO2/MMBTU</td>
</tr>
<tr>
<td>Utility System #CO2/MWh</td>
<td>2,000</td>
</tr>
<tr>
<td>Space Heating - Oil to Heat Pump</td>
<td>202</td>
</tr>
<tr>
<td>Warm Climate 3,000 - 6,000 HDD</td>
<td>209</td>
</tr>
<tr>
<td>Cold Climate >7,000 HDD</td>
<td>314</td>
</tr>
<tr>
<td>Space Heating - Natural Gas to Heat Pump</td>
<td>130</td>
</tr>
<tr>
<td>Warm Climate</td>
<td>209</td>
</tr>
<tr>
<td>Cold Climate</td>
<td>314</td>
</tr>
<tr>
<td>Water Heating - Gas to Electric Resistance</td>
<td>167</td>
</tr>
<tr>
<td>Warm Climate</td>
<td>209</td>
</tr>
<tr>
<td>Cold Climate</td>
<td>314</td>
</tr>
<tr>
<td>Water Heating - Gas to Heat Pump</td>
<td>167</td>
</tr>
<tr>
<td>Warm Climate</td>
<td>209</td>
</tr>
<tr>
<td>Cold Climate</td>
<td>314</td>
</tr>
<tr>
<td>Clothes Drying - Gas to Ultrasonic</td>
<td>167</td>
</tr>
<tr>
<td>Automobile - Gasoline to EV</td>
<td>0.65</td>
</tr>
</tbody>
</table>

- Green = BE
- Yellow ~ OK
- Red = Don’t electrify, yet
Think Ahead: Electric Power is Getting Much Cleaner...

So Benefits Will Increase Over Time as Devices Improve Along With the Grid
Grid Management: Workplace EV Charging

Source: Jim Lazar, RAP
Where Will Electrification Initiatives Originate?

- Customers
- Policymakers
- Commission Initiatives
- Utility Proposals
How Best to “Manage” and “Influence”? (1)

- **Commission Initiatives:**
 - Structure Explicit Processes
 - Establish Principles and Goals
 - Include the *Three Criteria*
 - Define Utility Role and Cost Recovery
 - Get Stakeholder Feedback
 - Design, Plan, and Implement
 - Learn and Revise
How Best to “Manage” and “Influence”? (2)

- **Utility Proposals:**
 - Meet the *Three Criteria*
 - How: Rate Design = Cornerstone
 - Where: Distribution System Planning done?
 - Aligns with Power Sector Transformation initiatives?
 - Aligns with state RE and EE policies?
 - Modify RPS to avoid discouraging BE?
 - Modify EERS to avoid discouraging BE?
 - Equity Impacts?
 - Resiliency Impacts?
 - Cybersecure?
How Best to “Manage” and “Influence”? (3)

• **Alignment with Other Policy Goals?**
 - Jobs
 - Economic Development
 - Policy Leadership

• **Alignment with the Future?**
 - *Three Criteria* benefits over time
 - Technology development continues…
 - Storage, Transactive Energy, Blockchain, etc.
Technology Development Continues: Ultrasonic Clothes Dryer

- Uses sound waves to “shake” moisture out
- 80% reduction in electricity consumption compared to electric resistance dryer

![LADWP Efficiency for Clothes Drying Chart]

![Image of Ultrasonic Clothes Dryer]
Risks Also Loom…

• Perpetuation of kWh-throughput business model and existing rate designs

• Hitching to the electrification bandwagon

• Transactive energy and storage become economic first => bypass

• Regulatory awareness, issues, delays
There’s Not a Lot of Time…

<table>
<thead>
<tr>
<th>5th Avenue, NYC, Easter 1900</th>
<th>Park Avenue, NYC, Easter 1913</th>
</tr>
</thead>
<tbody>
<tr>
<td>See any automobiles?</td>
<td>See any horses?</td>
</tr>
</tbody>
</table>

RAP papers on operationalizing beneficial electrification coming soon.

Source: Tony Seba
About RAP

The Regulatory Assistance Project (RAP)® is an independent, non-partisan, non-advocacy, non-governmental organization dedicated to accelerating the transition to a clean, reliable, and efficient energy future.

Learn more about our work at raponline.org
Staff Electricity Subcommittee