

Staff Electricity Subcommittee

Advancing Electrification: How to Ensure it is Efficient and Beneficial

Moderator: Michael Marchand, Arkansas Staff

Panelists: Arshad Mansoor, EPRI and Ken Colburn, RAP

Efficient Electrification *What is the Opportunity?*

2018 NARUC Winter Policy Summit February 11–14, 2018

Dr. Arshad Mansoor Senior Vice President EPRI

The Integrated Energy Network – Efficient Electrification

Efficient Electrification is a Key Enabler for the Integrated Energy Network

Winter Olympics 2018

Clean Air... Clear Choice

Paper Mill – Infrared Drying

Clean Air... Less Water... Clear Choice

Indoor Agriculture

Clean Air... Less Water... Less Land... Less Pesticide... More Yield... Clear Choice

16

Efficient Electrification

Mobility

Heating and Cooling

New Applications

ELECTRIC POWER RESEARCH INSTITUTE

Efficient Electrification – Win...Win...Win

METRIC OPTIONS	BENEFIT			
	CUSTOMER	UTILITY	SOCIETY	L Participation of the second se
Economic Efficiency It costs less	\checkmark	\checkmark	\checkmark	
Energy Efficiency Uses fewer Btu overall 	1	\checkmark	\checkmark	Electric Process Heating
 Economic Development Jobs creation and retention Development of community assets 	1	~	-	
 Environment Emissions reduction, CO₂ savings, water savings 	\checkmark	\checkmark	\checkmark	Heat Pumps
Grid Flexibility		~	\checkmark	
 Productivity Improvements Plant output increases Reduction in energy intensity Improved product quality 			~	
Worker Safety Improvements Reduced lost time and accidents 	\checkmark	3	\checkmark	Electric Lift Trucks

10

101

-

EPRI National Electrification Assessment

EPRI MODEL INPUTS

SCENADIO	VARIABLES				
SCENARIO	TECHNOLOGY	FUEL COST	POLICY		
CONSERVATIVE	Slower Technology Change	Flat Fuel Prices	No Additional CO ₂ Policy		
REFERENCE	Rapid Technology Change	Rising Fuel Prices	No Additional CO ₂ Policy		
PROGRESSIVE	Rapid Technology Change	Rising Fuel Prices	40% Economy-Wide CO ₂ Emissions Reductions by 2050		
TRANSFORMATION	Rapid Technology Change	Rising Fuel Prices	80% Economy-Wide CO_2 Emissions Reductions by 2050		

MODEL OUTPUTS

Scenario Impacts on Final Energy, CO ₂ , and Electric Load: Between 2015 and 2050						
	+44+	CO ₂	(\mathbf{A})			
SCENARIO (Electricity Portion of Final Energy in 2015 & 2050)	Total Final Energy	Economy Wide	Electric Load			
CONSERVATIVE (21% & 32%)	20%	19%	24%			
REFERENCE (21% & 36%)	22%	20%	32%			
PROGRESSIVE (21% & 39%)	27%	57%	35%			
TRANSFORMATION (21% & 47%)	32%	67%	52%			

US Electrification Assessment...Key Insights and Actions

Customers Increase Reliance on Electric End-Uses	Driven by economic technology adoption and consumer choice; accelerated by policy and regulatory constructs	Accelerate Grid Modernization	Increasing electrification will require a more reliable, resilient and flexible electricity grid
Final Energy Consumption Decreases	Efficient electrification, coupled with continued efficiency gains, leads to a decline in total energy consumption	Optimize Grid Operations and Planning	Planning and operation of the grid must evolve with connected efficient electric technologies as grid resource
Natural Gas Use Increases	Both for end-use applications across the economy and for electric generation	Pursue Market Transformation	Fuel neutral energy efficiency policy, innovative rate structure, public charging infrastructure and customer awareness and education
Air Emissions Decrease	GHG emissions reduced as generation continues to be clean and electrification growth increases	Prioritize Technology Innovation	Innovation in energy storage, power electronics, and materials key to advance efficient electrification and helping to manage affordability

Coming in 2018.....State/Utility Efficient Electrification Assessments

CONTACT

Francisco de la Chesnaye 202.293.6347 | fdelachesnaye@epri.com Allen Dennis 865.218.8192 | adennis@epri.com

OBJECTIVES & SCOPE

Integrated analysis of customer energy demand and the electric power system combined with detailed technology assessments to support utility decision making.

VALUE

- Actionable research on renewable targets, air quality attainment, energy market reforms, and CO₂ mitigation
- Technology assessment on renewables integration, flexible operations, and distributed energy resources
- Analytics to inform your understanding of how increased electrification will impact your evolving power system
- Unbiased information to inform industry stakeholders on the benefits/costs of electrification for society and customers

Task 1:	Task 2:	Task 3:	Task 4: Utility-level Assessment
Energy System Assessment	Environmental Assessment	Transmission Assessment	and Implementation Plan
(2020 to 2050)	(2020 to 2050)	(selected years)	(selected years)
	Utility-Level Assessment		

Coming in 2018...Efficient Electrification Benefit/Cost Assessment Methodology

Environmental Impacts

- GHG Emissions
- Air Quality
- Water
- Land
- Other Resources

Economic Impacts

- Productivity
- Product Quality
- Worker Health and Safety
- Occupant Comfort
- Cost of Service

Integrated Energy Network Infrastructure

- Avoided Costs
- Grid Flexibility
- Reliability

Leverage Framework of Standard Tests for Energy Efficiency Cost-Effectiveness

Develop Efficient Electrification Equivalent of "National Standard Practice Manual for Energy Efficiency Cost-Effectiveness"

ELECTRIFICATION 2018

INTERNATIONAL CONFERENCE & EXPOSITION
WWW.electrification2018.com

SAVE THE DATE

AUGUST 20-23, 2018 LONG BEACH, CALIFORNIA

Scan here for the latest EPRI Efficient Electrification newsletter

Together...Shaping the Future of Electricity

07 February 2018

Advancing Electrification: Ensuring It's Beneficial

NARUC Staff Subcommittee on Electricity

Ken Colburn Principal and US Program Director The Regulatory Assistance Project (RAP)® Bar Harbor, Maine United States +1 617 784 6975 kcolburn@raponline.org raponline.org

Disruptive Forces Transforming Electricity

Electrification is Well Underway

Photo credits: Nest and Dennis Schroder, NREL

But, Not All Electrification is Created Equal

- It's all about
 load growth,
 right?
- Brattle: "Utility sales could nearly double by 2050"!

What Makes for <u>Beneficial</u> Electrification (BE)?

Three explicit criteria:

Metrics Matter...

		Marginal Resource on System to Serve Load				
Emissions Efficiency	Existing Fuel #CO ₂ / MMBTU	100% Coal	50% Coal 50% CCCT Gas	100% CCCT Gas	50% CCCT Gas / 50% Non- Carbon	100% Non- Carbon
Utility System #CO ₂ /MWh		2,000	1,200	800	400	0
Space Heating - Oil to Heat Pump	202					
Warm Climate 3,000 - 6,000 HDD		209	143	78	39	0
Cold Climate >7,000 HDD		314	215	117	58	0
Space Heating - Natural Gas to Heat Pump	130					
Warm Climate		209	143	78	39	0
Cold Climate		314	215	117	58	0
Water Heating - Gas to Electric Resistance	167	628	430	233	117	0
Water Heating - Gas to Heat Pump	167					
Warm Climate		209	143	78	39	0
Cold Climate		314	215	117	58	0
Clothes Drying - Gas to Ultrasonic	167	157	108	58	29	0
	#CO ₂ /Mile					
Automobile - Gasoline to EV	0.65	0.54	0.37	0.20	0.10	0

• Green = BE

Think Ahead: Electric Power is Getting Much Cleaner...

So Benefits Will Increase Over Time as Devices Improve Along With the Grid

Grid Management: Workplace EV Charging

Where Will Electrification Initiatives Originate?

- Customers
- Policymakers
- Commission Initiatives
- Utility Proposals

How Best to "Manage" and "Influence"? (1)

Commission Initiatives:

- Structure Explicit Processes
- Establish Principles and Goals
 - Include the Three Criteria
- Define Utility Role and Cost Recovery
- Get Stakeholder Feedback
- Design, Plan, and Implement
- Learn and Revise

How Best to "Manage" and "Influence"? (2)

Utility Proposals:

- Meet the Three Criteria
- How: Rate Design = Cornerstone
- Where: Distribution System Planning done?
- Aligns with Power Sector Transformation initiatives?
- Aligns with state RE and EE policies?
 - Modify RPS to avoid discouraging BE?
 - Modify EERS to avoid discouraging BE?
- Equity Impacts?
- Resiliency Impacts?
- Cybersecure?

How Best to "Manage" and "Influence"? (3)

- Alignment with Other Policy Goals?
 - Jobs
 - Economic Development
 - Policy Leadership
- Alignment with the Future?
 - Three Criteria benefits over time
 - Technology development continues...
 - Storage, Transactive Energy, Blockchain, etc.

Technology Development Continues: Ultrasonic Clothes Dryer

- Uses sound waves to "shake" moisture out
- 80% reduction in electricity consumption compared to electric resistance dryer

Risks Also Loom...

- Perpetuation of kWh-throughput business model and existing rate designs
- Hitching to the electrification bandwagon
- Transactive energy and storage become economic first => bypass
- Regulatory awareness, issues, delays

There's Not a Lot of Time...

RAP papers on operationalizing beneficial electrification coming soon.

About RAP

The Regulatory Assistance Project (RAP)[®] is an independent, nonpartisan, non-advocacy, non-governmental organization dedicated to accelerating the transition to a clean, reliable, and efficient energy future.

Learn more about our work at *raponline.org*

Bar Harbor, Maine

United States

+1 617 784 6975 34 kcolburn@raponline.org raponline.org

Staff Electricity Subcommittee