

## Customer Choice: End-Use Energy

#### EPRI's 2018 National Electrification Assessment

Committee on Critical Infrastructure July 15, 2018

> Anda Ray - EPRI Senior Vice President External Relations and Technical Resources

> > Tom Wilson – EPRI Principal Technical Executive



© 2019 Eachtic PonerRasaerdvinsiture, inc. 28 rights reserved





#### Integrated Energy Network



# What is the objective of EPRI's assessment?

#### **Customer Choices for End-Use Energy:**

- Economy-wide assessment Residential, commercial, industrial and transport
- Customers have broad technology choices and control
- Customer decisions integrated with detailed electricity supply model



Source: EPRI 3002009917 February 2017

#### Power System Evolution...

#### PRODUCE CLEAN ENERGY

#### EVOLVE TO DYNAMIC GRID

#### ADOPT ELECTRIC END-USES







## End Use (Final) Energy Use By Sector

Quad BTUs



\* Excludes upstream and midstream energy use, e.g., power generation, oil and gas extraction, refining, and pipelines

## EPRI's US National Electrification Assessment Scenarios

| CONSERVATIVE   | Slower Technology<br>Change                      | <ul> <li>AEO 2017 growth path<br/>for GDP and service<br/>demands, and primary</li> </ul> |  |
|----------------|--------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| REFERENCE      | Reference Technology                             | <ul><li>fuel prices</li><li>EPRI assumptions for</li></ul>                                |  |
| PROGRESSIVE    | Reference Technology +<br>Moderate Carbon Price  | cost and performance of<br>technologies and energy<br>efficiency over time                |  |
| TRANSFORMATION | Reference Technology +<br>Stringent Carbon Price | <ul> <li>Existing state-level<br/>policies and targets</li> </ul>                         |  |

## Efficient Electrification: Reference Scenario





## U.S. National Electrification Assessment (USNEA) - Results

| TRANSFORMATION (21% & 47%)                                    | 32%                   | 52%              | 18%            | 67%             |
|---------------------------------------------------------------|-----------------------|------------------|----------------|-----------------|
| PROGRESSIVE (21% & 39%)                                       | 27%                   | 35%              | 31%            | 57%             |
| <b>REFERENCE</b> (21% & 36%)                                  | 22%                   | 32%              | 40%            | 20%             |
| CONSERVATIVE (21% & 32%)                                      | 20%                   | 24%              | 33%            | 19%             |
| SCENARIO (Electricity Portion of Final Energy in 2015 & 2050) | Total Final<br>Energy | Electric<br>Load | Natural<br>Gas | Economy<br>Wide |

What are the Implications for end-use energy, electricity, CO2 and gas?

SCENARIO (Electricity Portion of Final Energy in 2015 & 2050)

**REFERENCE** (21% & 36%)

Overall Economy-wide Energy Efficiency Decreases Total End-Use Energy – Electricity and Natural Gas are a Larger % of End-Use Energy

Total Final

Energy

22%

Electric

Load

32%

Natura

Gas

40%

CO

Economy

Wide

20%



Overall, cost of end-use energy is less, but the electricity and natural gas components are a larger part of final energy and, thus, a larger part of the energy costs.

## Efficient Electrification...Reference Scenario



## Energy Efficiency + Cleaner Electricity = Efficient Electrification



## US EV sales exceed 782k through end of February 2018





# Range of battery electric vehicles (BEVs) is also increasing



Updated 1/15/2018

## Reference Projections for US Light-Duty Vehicles



### Critical Trends – Electric Vehicle

TRANSPORT MARKET PROFILE 4440/0 PERCENTAGE OF FINAL ENERGY

96% PERCENTAGE OF FINAL ENERGY PROVIDED BY FOSSIL FUEL 666%

ENERGY CONSUMED BY LIGHT DUTY VEHICLES



6

SIGNPOSTS 1 POLICY & RREGULATION 2 AUTONOMOUS VEHICLE

3 INCREASE IN MODEL OPTIONS

EXPANDING PUBLIC INFRASTRUCTURE

INNOVATION IN FAST CHARGING

COSTS



### Comparison for Final End-Use Energy Sectors



## Key Take Away Messages from National Electrification Assessment

| Electrification<br>Trend Continues         | Driven by technological change<br>and consumer choice, further<br>bolstered by policy |               |
|--------------------------------------------|---------------------------------------------------------------------------------------|---------------|
| Efficiency Increases<br>Emissions Decrease | Efficient electrification + end-use<br>efficiency lead to falling final<br>energy use | Key Takeaways |
| Natural Gas Use<br>Grows                   | Remains a key fuel for end-use<br>and electric generation                             |               |
| System Impacts                             | Changing load shapes and new<br>flexible loads create challenges<br>and opportunities |               |

#### **Meeting Future Customer Energy Expectation**

Integration can Improve Reliability, Increase Efficiency, Create New Opportunities, and Expand Customer Choice





## **Critical Trends – Data Analytics/Artificial Intelligence**



#### **Critical Trends: "Shared" Integrated Grid**

#### Customer Engagement Connected Devices =

## Shared Economy

#### **Community Resiliency**













Does EPRI's Research Have Policy Implications?



- Cleaner Energy
   Production
- Grid Modernization and Protection
- Continuous Technology
   Advances



- Increased Energy-Efficiency
- Cleaner Energy
- Affordable Customer Choice
   Will need an economywide perspective of final energy use
- Integrated Regulation, Codes and Standards
- Cost Benefit Models and Metrics
- Market Designs



### Efficient Electrification Benefits/Cost Framework... Leveraging Efficiency Cost-Effectiveness Tests... KEY QUESTIONS



IS THE PARTICIPANT BETTER OFF? (PCT)

IS RESOURCE EFFICIENCY IMPROVED? (TRC)

**ARE RATES LOWERED? (RIM)** 

ARE SOCIETAL COSTS LOWER? (SCT)

ARE REVENUE REQUIREMENTS LOWERED? (PAC)

LEVERAGE EFFICIENCY COST EFFECTIVENESS TESTS...FOCUS ON REGULATORY SUPPORT





#### State and Utility Electrification Projects in

#### **State and Utility Electrification Projects in Development**

<sup>30</sup> June 30, 2018





#### ELECTRIFICATION 2018 INTERNATIONAL CONFERENCE & EXPOSITION www.electrification2018.com

## SAVE THE DATE

AUGUST 20-23, 2018 LONG BEACH, CALIFORNIA

- To gain an understanding of the quantifiable customer and environmental benefits of efficient electrification
- To learn about best practices for implementing efficient electrification programs to maximize customer benefit
- To experience the latest electrification-related technologies in action
- To collaborate with industry, government, and academic leaders

For more information, contact Info@Electrification2018.com

Scan here for the latest EPRI Efficient Electrification newsletter





#### **Together...Shaping the Future of Electricity**

