Staff Subcommittee on Rate Design
Introduction to Blockchain
<table>
<thead>
<tr>
<th>Topic</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>What’s all the fuss about?</td>
<td></td>
</tr>
<tr>
<td>What is a blockchain?</td>
<td></td>
</tr>
<tr>
<td>Application for power and utilities</td>
<td></td>
</tr>
<tr>
<td>APPENDIX</td>
<td></td>
</tr>
</tbody>
</table>
So what's all the fuss about?
Everyone’s talking about it...

I think we should build a blockchain.

UH-OH

Does he understand what he said or is it something he saw in a trade magazine ad?

What color do you want that blockchain?

I think mauve has the most Ram.
Everyone’s (still) talking about blockchain...

“You should be taking this technology as seriously as you should have been taking the development of the Internet in the early 1990s.”

– Blythe Masters, CEO of Digital Asset Holdings

“... whether it is the virtual currency or the services around, virtual currencies [based on distributed ledgers] do have the promise of changing the world.”

– Vikram Pandit, ex CEO Citigroup

“The revolution will not be televised. It will be cryptographically time stamped on the block chain.”

– Dominic Frisby, Author of Bitcoin – the Future of Money

“The blockchain protocol threatens to disintermediate almost every process in financial services.”

– World Economic Forum

“The technology behind bitcoin could transform how the economy works.”

– The Economist

“In lots of areas, it looks like the blockchain will work and it is easy to see how it could revolutionise finance.”

– Rhomaios Ram, Head of Product Management Deutsche Bank Global Transaction Banking

“Our analysis suggests that distributed ledger technology could reduce banks’ infrastructure costs attributable to cross-border payments, securities trading, and regulatory compliance by between $15-20 billion per annum by 2022.”

– The Fintech 2.0 Paper: Rebooting Financial Services
If you take just one thing away today....

Bitcoin = blockchain

- **Blockchain** is a technology that enables a secure, distributed ledger of transactions.
- **Bitcoin** is just one particular use of this technology to create a new “crypto currency”
In 7 years, blockchain has moved from a conceptual paper to gaining significant real-world attention and investment.
What is a blockchain?
Blockchains as we know them today have had their own evolutionary process

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Satoshi Nakamoto releases white paper on Bitcoin</td>
<td>• Major challenges with Bitcoin surfaced and Bitcoin becomes a currency associated with crime</td>
<td>• Various regulators including FinCEN, and NY Fed issue direction</td>
<td>• Distributed ledger based technologies and use cases are going into production. Several number of use cases in banking are established</td>
<td></td>
</tr>
<tr>
<td>• Bitcoin was released and the first exchange was opened</td>
<td>• Growing trend emerges to determine the use of blockchains</td>
<td>• Banks initiate early adoption and review of digital currencies</td>
<td>• Digital currencies are in heavy use in some parts of the world</td>
<td></td>
</tr>
<tr>
<td>• Major challenges with Bitcoin surfaced and Bitcoin becomes a currency associated with crime</td>
<td>• Growing trend emerges to determine the use of blockchains</td>
<td>• Banks initiate large scale initiatives in use of blockchain</td>
<td>• Banks are expected to review the use cases in various lines of business</td>
<td></td>
</tr>
<tr>
<td>• Various regulators including FinCEN, and NY Fed issue direction</td>
<td>• Major challenges with Bitcoin surfaced and Bitcoin becomes a currency associated with crime</td>
<td>• R3 develops a consortium and more than 25 leading global banks join the consortium in blockchain in 2 months</td>
<td>• Early adoption through experiments likely to include new business areas</td>
<td></td>
</tr>
<tr>
<td>• Growing trend emerges to determine the use of blockchains</td>
<td>• Major challenges with Bitcoin surfaced and Bitcoin becomes a currency associated with crime</td>
<td>• New blockchain-like distributed databases emerge collectively, Distributed Ledgers</td>
<td>• Banks initiate negotiations on historical established technologies and operational areas such as custody and clearing</td>
<td></td>
</tr>
<tr>
<td>• Growing trend emerges to determine the use of blockchains</td>
<td>• Major challenges with Bitcoin surfaced and Bitcoin becomes a currency associated with crime</td>
<td>• R3 develops a consortium and more than 25 leading global banks join the consortium in blockchain in 2 months</td>
<td>• Banks initiate negotiations on historical established technologies and operational areas such as custody and clearing</td>
<td></td>
</tr>
<tr>
<td>• Various regulators including FinCEN, and NY Fed issue direction</td>
<td>• Major challenges with Bitcoin surfaced and Bitcoin becomes a currency associated with crime</td>
<td>• New blockchain-like distributed databases emerge collectively, Distributed Ledgers</td>
<td>• Banks initiate negotiations on historical established technologies and operational areas such as custody and clearing</td>
<td></td>
</tr>
</tbody>
</table>

Bitcoin

Blockchain

Distributed Ledger
History is fun and all, but how do blockchains actually work in practice?

A blockchain is a distributed infrastructure technology held collaboratively, which enables a decentralized exchange of trusted data. It uses cryptography to allow each participant on the network to manipulate the ledger in a secure way, without the need for a central authority.

Database & Network
Blockchain is both a database and a network, which means it can store and transmit data.

Secure records
- **One single source** of immutable records accessible only by permissioned parties.

Digital Identity
Each participating party can be uniquely identified and their activities recorded.

Provable Exchange
All data exchanges can be verified to have taken place at a point in time.

Rapid Scalability
Nodes (parties) can be rapidly added, connecting all to the network.

Synchronised
All activity on the blockchain is automatically reflected across the network.

Transparency
Visibility into transactions through digital signatures which binds each party to the exchange.

Smart Contracts
Code can be added to transactions that allows autonomous execution of functions once predefined conditions have been met.
A blockchain

- A distributed, secure, peer-to-peer ledger
- Everyone in the network can hold a copy
- Contains *viable* (proven, authenticated) transactions
- Cryptographic proof is used to validate transactions
- Transactions are grouped into blocks by all members of the network
- Hashes link the blocks, creating a chain
 (The chain cannot be modified or the hashes will no longer be valid)
Building the chain

- Anyone in the network can add a block to the chain (any copy of the distributed ledger)
- New blocks must then be validated by others to be *valid blocks*
- Conflicts will occur and need to be resolved
- The longest chain rule (Bitcoin)
What does it look like

Transactions are sent when the sender signs a transaction, which proves that they own the tokens that they are trying to transmit.

The blockchain is stored amongst many computers; consequently, any changes to a block not agreed on by a majority will be rejected.

In advanced blockchains, tokens may contain different types of data, and addresses may store code that can be executed when a token is sent to them.

<table>
<thead>
<tr>
<th>Block number</th>
<th>Action</th>
<th>What it looks like in the blockchain</th>
<th>Implicit balances</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Starting balances</td>
<td>N/A</td>
<td>A: 10 B: 10 C: 0 G: 0</td>
</tr>
<tr>
<td>1</td>
<td>Alice initiates a 5BTC transaction to Gary</td>
<td>A,G,5,[A's signature]</td>
<td>A: 5 B: 8 C: 0 G: 7</td>
</tr>
<tr>
<td></td>
<td>Bob initiates a 2BTC transaction to Gary</td>
<td>B,G,2,[B's signature]</td>
<td>A: 5 B: 8 C: 0 G: 7</td>
</tr>
<tr>
<td>2</td>
<td>Gary initiates a 3BTC transaction to Carrie</td>
<td>G,C,3,[G's signature]</td>
<td>A: 3 B: 10 C: 3 G: 4</td>
</tr>
<tr>
<td></td>
<td>Alice initiates a 2BTC transaction to Bob</td>
<td>A,B,2,[A's signature]</td>
<td>A: 3 B: 10 C: 3 G: 4</td>
</tr>
<tr>
<td>3</td>
<td>Carrie initiates a 1BTC transaction to Alice</td>
<td>C,A,1,[C's signature]</td>
<td>A: 4 B: 10 C: 2 G: 4</td>
</tr>
</tbody>
</table>
How does this solve our problems?

- Trust – resolved, as we now have proof of a digital identity which is distributed around the network and validated by many parties

- Proof – proof of work / proof of value based on multiple entities validating transactions using cryptographic techniques and reaching a consensus

- Digital uniqueness – a distributed ledger based on a cryptographic chain is almost impossible to forge
Application for power and utilities
EY's focus on blockchain

We are currently identifying use cases and opportunities for EY to become a leader in the development and deployment of blockchain solutions...

1. Expanding the knowledge base
2. Developing use cases
3. Identifying opportunities at clients
4. Bringing opportunities to our blockchain development team
5. Developing prototypes
6. Collectively developing EY Points of View
Various blockchain protocols
Bitcoin

- Bitcoin is a cryptocurrency and a payment system
- First introduced in 2008 by an unknown source
 - Regarded as the first cryptocurrency
- First use or application of a public blockchain
 - Bitcoins are the currency used to reward for processing work
Ethereum

- A decentralized blockchain platform that runs smart contracts: applications that run exactly as programmed that can facilitate, verify, or enforce the negotiation or performance of a contract
- Founded in 2013 by programmer Vitalik Buterin
 - Live blockchain launched in 2015
 - Created on similar concepts of Bitcoin blockchain
The Hyperledger Project started in 2015 as a collaborative effort created to advance blockchain technology. The project’s goal is to identify and address important features for a cross-industry open standard for distributed ledgers that can transform the way business transactions are conducted globally.
Other protocols

► Everledger
 o Permanent blockchain ledger for diamond asset registry

► Factom
 o Data storage through a decentralized system

► Ascribe
 o Public ownership rights assigned via the blockchain

► Blockstack
 o Decentralized internet
Consensus

- The key part of a blockchain – agreement that transactions and blocks are valid requires consensus from multiple parties.
- In a private blockchain this is relatively easy, as access is restricted and all parties have a vested interest in maintaining the integrity of the chain.
- In a public blockchain this is much more complex, and must be engineered into the solution.
- Many consensus mechanisms exist, e.g. Proof of Work, Proof of Stake.
- The aim is to ensure that agreement exists on the validity of all transactions and blocks in the chain.

Ripple consensus protocol
Consensus Mechanisms

► Proof of Work – Is a mathematical calculation that completes a block. Transactions are blocked, and a solution is difficult to find (but easy to verify) by utilizing a target state hashing model. The winner earns the block reward.

► Proof of Stake – Transactions are blocked periodically, and miners are given a chance to win the block (and validate transactions) based on the amount of asset they hold. They are incentivized to be trustworthy as it dictates the value of their holdings.

► There are other types (federated, trusted) and some distributed ledgers don’t use any.
NARUC

Winter Committee Meetings

Staff Subcommittee on Rate Design
Distributed grid solutions that bring people, utilities and technology together
• An energy company applying well-developed strategies for market transformation and adoption of new tech
• Founded in 2012
• Company background in:
 – Energy Program Design
 – Community Engagement
 – EM&V
 – Codes and Standards
 – REC and Green Power Markets
 – Blockchain
 – Advanced Meters
 – System Architecture
 – Computation

Technology Adoption Curve

EVERETT ROGERS - DIFFUSION OF INNOVATIONS 1962

- 2.5% Innovators
- 13.5% Early Adopters
- 34% Early Majority
- 34% Late Majority
- 16% Laggards
- Measure energy flows and hash information to blockchain
- Patented, proprietary and UL-listed
- Next generation AMI
- Network through a variety of communication protocols and write smart contracts within the network
More than half of the estimated additional solar generation will be distributed, not utility scale.
Utility Grid Faces Structural Issues

- Utility Grid is unidirectional and brittle while future calls for fast-acting platform that can enable two-way flow and is resilient and adaptive.
- Current utility operating models do not encourage Distributed Energy Resources (DERs).
- Major market changes underway, unprecedented shifts by utilities and market actors.
- “Prosumer” movement creating pressure on existing business models.
- Broad, coordinated control of small scale DERs is uneconomic.
- Consumer participation in energy markets limited by regulatory barriers and solutions to facilitate secure, efficient transactions.
Consumers have much more choice and can create personalized energy sourcing profiles.
- Example: 80% from regional renewables and 20% from local microgrid.
Milestones
Smart Meter Proliferation
• Price discovery & Energy Transaction with microgrid members
• Real-time, location based energy market

Transact on consumer values
• Price, green energy, clean signals, social good
• Multi-factor tokens to encourage what you want to see in the market
Blockchain-based Microgrid Intelligence System

- Transactive, distributed intelligence system to control microgrids
- Based on open-source, cryptographically-secure protocol layer delivering military-grade cybersecurity and real-time data
- Auditable, immutable, secure device control
Tokenization of energy production, storage and consumption creates efficient **local** markets.

Efficient Local Markets attract investment, increase impacts and create **local value** for energy, environment and community.

Rise of the Prosumers neighbor-to-neighbor, neighbor-to-business community transactions reward **local markets** and return community value.

Reward efficiency and resiliency allowing participants to optimize **existing energy spend** according to individual values, priorities and outcomes.
Energy Consumers Demand New Choice and Services

69% of consumers are interested in having an energy trading marketplace.

47% of consumers plan to sign up for a community solar program managed by a 3rd party and one that allows them to benefit from solar even if they do not have solar panels on their property within the next 5 years.

Source: Accenture multi-year New Energy Consumer Research program: surveyed over 13,000 consumers from 26 countries from 2010 - 2016.
Community Energy
locally generated with community assets

Microgrid Markets
local energy market, revenues and increased system resilience

TransActive Grid
secure platform for peer-2-peer transactive energy and markets
Current Status & Next Steps

- First peer-to-peer energy transactions executed
- Pilot and use case discussions underway
- Testing new business models
- Brooklyn Microgrid pilot in development
 - Over 130 sites registered

Partners
- Production partners lined up
- Controls software development underway
New Technology – New Choices – New Deal

They are your electrons, right? Don’t forget that.
Staff Subcommittee on Rate Design
Hierarchical Energy Markets Enabled by Blockchain
Siemens Vision 2020:
Energy Management is a Siemens focus area

Global trends

- Digital transformation
- Globalization
- Urbanization
- Demographic change
- Climate change

- Electrification
- Automation
- Digitalization
Siemens Digital Grid

Digitalization
- Cloud enabled applications
- Enterprise IT
 - IVR
 - GIS
 - Network planning
 - Asset management
 - WMS/mobile
 - Weather
 - CIS/CRM
 - Billing
 - Web Portals
 - Enterprise Service Bus
- PSS® & SIGUARD
 - Grid planning and simulation
- Spectrum Power platform
 - Grid control applications
- EnergyIP platform
 - Market driven applications

Cyber security

Automation
- Smart transmission
- Smart distribution
- Smart consumption and microgrids

Electrification

Global Interoperability: DNP3, IEC 61850 & 60870, OpenADR, DLMS, ANSI ...

CIM – Common Information Model (IEC 61970)
The Evolving Digital Footprint Imposes New Requirements

The New 21st Century Customer-Centric Distributed Energy Experience

Energy Supplier

The energy suppliers ensure safe, reliable, and affordable energy to their customers based on a deterministic rate base mechanism.

Energy Integrator

Driven by customer demand, energy suppliers evolve to manage intermittent energy generation from third-party suppliers and consumers.

Energy Service Provider

Rise of the Prosumer, combined with many 3rd energy choices, leads energy suppliers and integrators to become distribution network providers.
How managers in the energy sector see the future of Blockchain

Figure 1: Potential of dissemination of Blockchain

1. Further dissemination likely
2. Game Changer for the energy supply industry
3. Niche applications
4. Small to non-existent

Source: dena ESMT Studie Blockchain, 2016

Figure 2: potential use cases of Blockchain in the energy sector.
Distribution market for P2P energy trading based on Blockchain

Distribution Marketplace

- **Dynamic pricing based on market mechanisms**
 - Platform enabling dynamic price making for energy supply and demand accounting for grid conditions based on smart contracts
 - Automated payment of nodes based on performed transactions

- **Ensure compliance with grid constraints**
 - Local grid operator or DSO impose grid fees and reliability limitations on energy trade in marketplace
 - Local utility and/or aggregator enables exchange of energy between different market places

Information flow

- Trade energy demand, demand flexibility & surplus energy
- Trade generated energy and storage capabilities
- Trade surplus energy and energy demand with neighbor cells
- Verification of energy transaction and logging
- Verification of transaction and logging
P2P energy trading in and between distribution grids using blockchain technology enabling robust hierarchical cell-based energy system

Local market place can be based on:
- Grid infrastructure of one or more DSOs

Local market place can contain:
- All types of consumer, prosumers & producers
 - Individual Households
 - Commercial & Industrial Facilities
 - (local) Power plant operators
- With all types of loads, generation & storage assets
 - Photovoltaics
 - Wind
 - Storage
 - CHP
 - Biogas-PP, Gas Peaker-PP
 - Heat Pumps
 - Electric Vehicles
 - Flexible Loads

Cell B

Cell C

Cell D

Cell E

Upper layer infrastructure
ISO

Local market place

Cloud based, multi-tenant Energy trading & control platform
Ravi D Pradhan
Vice President
Siemens Energy Management
Digital Grid

E-mail: ravi.pradhan@siemens.com

siemens.com
Staff Subcommittee on Rate Design
Economic Implications of Blockchain for Electricity Distribution and Markets

Lynne Kiesling
Department of Economics, Northwestern University
lkiesling@northwestern.edu
February 2017
Transactive microgrids

Smart buildings,
smart campuses,
smart communities.

Ring bus - microgrid perimeter

Microgrid control system
Active balancing among energy sources and energy-consuming devices.

Utility connection or interconnection

© 2014. Microgrid Institute
Economics of blockchain for transactive energy

• Blockchain as transaction cost-reducing market platform
• Blockchain market platform + digital tech for sensing and automation + DERs + governance framework => decentralized autonomous retail market
• Buildings as microgrids
• Retail markets for energy, ancillary services
There is no innovation without experimentation
Decentralized market processes are innovation platforms
A techno-economic electricity distribution platform

Source: EPRI (2014), p. 31
Top takeaways

• Digital technologies are massive transaction cost reducers, and a transactive energy approach can direct those cost reductions to consumers. Blockchain platforms enable welfare-enhancing transactive energy systems.

• Blockchain-based platforms around the distribution edge can engage in the experimentation that leads to innovation. Don’t perpetuate costs and entry barriers that stifle them.

• A distribution platform business model enables the wires utility to evolve into providing grid services to decentralized parties around the distribution edge.
Staff Subcommittee on Rate Design