Committee on Electricity
Committee on Electricity and Task Force on Innovation

Innovation Spotlight: New Transmission Technologies
Innovation Spotlight: New Transmission Technologies

Moderator: Hon. Brad Johnson, Montana

Speakers:
Alison Silverstein, North American Synchrophasor Initiative
Ken Blair, Ampjack Industries
David Rupert, Breakthrough Overhead Line Design (BOLD)
Todd Ryan, SmartWires
NARUC Summer Meeting 2017

SYNCHROPHASORS & THE GRID

Alison Silverstein, NASPI Project Manager

North American
SynchroPhasor Initiative
Synchrophasor technology improves grid reliability

• 30-60 samples/second – 100 times faster than SCADA – & time-synced, provides real-time situational awareness
• Highly granular, high volumes of data enable insight into grid conditions
 • Early warning of grid events & dynamic behavior
 • Fast identification of failing equipment and asset problems
 • Better models of equipment, generators and power system
• Redundant, secure operator tools and automated system protection
Grid visibility -- PMUs v. SCADA
Synchrophasor technology elements

1. Install PMUs at key substations & generators
2. Fast, secure, reliable communications networks
3. High-quality applications and analytical tools
4. Technical interoperability standards
5. Business practices that support reliable systems
2017 North America Synchrophasor networks

- Over 2,500 networked PMUS
- Most RCs are receiving and sharing PMU data for real-time wide-area situational awareness
Current uses for synchrophasor technology

Situational awareness
• Wide-area visualization
• Oscillation detection
• Angle monitoring
• Voltage stability monitoring
• Trending
• Event replay
• Alarms and alerts
• Linear state estimation
• Fault location

Off-line analysis
• NERC standard compliance
• Forensic event analysis
• Model validation (equipment, generation, power system)
• Identify equipment problems
• Equipment commissioning
A bad day in the Western Interconnection

Event Replay of 9/8/2011 Southwest Blackout

Data Source:
Power grid frequency data collected by FDRs (Frequency Disturbance Recorder)

Event Description:
On 9/8/2011, the Southwest Blackout occurred when a 500-kV line connecting Arizona with San Diego tripped following a capacitor switchout. This widespread power outage affected large areas of Southern California as well as western Arizona, northern Baja California, and Sonora. This event left nearly 7 million people without power.
BPA oscillation detection tool
Wind farm oscillations discovered with PMU data
Better data yields better generator models

BPA generator model - before (2014) and after (2015) PMU data validation

Blue – actual event recording, red = model
More synchrophasor uses

- Renewables integration – modeling, oscillation mitigation, transmission management
- Dynamic line loading for greater throughput w/o more capital investment
- Baselining – understanding “normal” and discovering new potential problems
- Electrical island detection and blackout restoration
- Automated system protection operations
What’s next for synchrophasor technology

- Advanced machine learning using PMU data to identify anomalous events and develop operator decision support tools
- Automated, autonomous system protection schemes, including wide-area damping
- Distribution-level uses for synchronized grid-level measurements (e.g., for two-way grid monitoring and analysis)
- Advance PMU deployment and applications use and data-sharing across TOs and RCs
Video credits

- PMUs v. SCADA – Electric Power Group
- Southwest blackout – FNET -- Dr. Yilu Liu, CURENT- University of Tennessee Knoxville
- Windfarm oscillations – Electric Power Group
- RTDMS

Other credits

- Map – North American Synchrophasor Initiative
- BPA application screen captures – BPA

More information – www.naspi.org
THANK YOU!

Alison Silverstein
NASPI Project Manager
alisonsilverstein@mac.com
https://www.youtube.com/user/TheAMPJACK
New Technology? Why Now?
Aging infrastructure
New technology offers:

- Higher capacity
- Greater efficiency
- Better use of existing rights-of-way
- Faster deployment
Compaction of entire three-phase circuit into delta arrangement
Optimization of individual conductors
BOLD can deliver 60% more power than conventional lines operating at the same voltage.
Line loss reduced by up to 33% over conventional lines
Better Use of ROW

BOLD vs. Traditional 345 kV
Better Use of ROW
Magnetic Field Profile

Conventional 345kV

BOLD 345kV
Community concerns over transmission lines include property value, health impacts, visual impacts:

- 79% value advanced technology
- 75% would pay more for advanced technology
- 70% preferred BOLD structures versus conventional double-circuit design
Faster Deployment

Community acceptance promotes faster project siting and completion
BOLD Projects

- Energized
- In planning or construction
Consider.

Learn more:
BOLDTtransmission.com/NARUC/
Magnetic Field Profile

Conventional 345kV

BOLD 345kV
https://www.youtube.com/channel/UCydroBm5gkMEJNpStRtHQ6g
Committee on Electricity