Committee on Electricity
American Water Works Assn’s Energy Efficiency Initiative: Targeting Compliance with EPA’s Clean Power Plan
Moderator: Hon. Susan Bitter Smith, AZ

Alan Roberson, American Water Works Assn.
Mike Shapiro, EPA Office of Water
Anthony Fiore, Director of DEP’s Energy Program &
Director of Energy Regulatory Affairs
Hon. Patricia Acampora, New York
William Varley, American Water
Alan Roberson,
American Water Works Assn.
Mike Shapiro,
EPA Office of Water
Anthony Fiore, Director, of New York DEP’s Energy Program & Director of Energy Reg. Affairs
National Association of Regulated Utility Commissioners

Summer Conference

July 14, 2015
Agenda

• Drivers for Change
• Overview of DEP’s Carbon Footprint & Reduction Potential
• Focus on Wastewater
• Food-Energy-Water Nexus
• Case Study on Co-Digestion
Drivers for Change

2007/2011

• 30% reduction in citywide emissions (below 2005 calendar year) by 2030
• 30% reduction in emissions from municipal government operations (below 2006 fiscal year) by 2017 (Local Law 22)
• Beneficially use 60% of produced anaerobic digester gas by 2017

2014

• 80% reduction in citywide emissions (below 2006 calendar year) by 2050
• 35% reduction in emissions from municipal government operations (below 2006 fiscal year) by 2025

2015

• Commercial Organics Law (Local Law 146) - Large food service establishments will be required to recycle their organic waste

2015

• Net zero energy WWTPs by 2050
• Zero Waste – reduce waste sent to landfills by 90% by 2030
• In 2006, the 2017 forecast indicated an effective reduction target of 47%, mostly the result of mandated projects (e.g., UV, Croton Filtration, and BNR upgrades). Because of efforts made, the forecast is now a 29% reduction target.

• Preliminary FY14 data shows an 8% reduction from FY13; from FY06-14: 10% reduction.

DEP GHG Emissions

GHG Emissions Profile
(*Business-as-Usual Case*)

- In 2006, the 2017 forecast indicated an effective reduction target of 47%, mostly the result of mandated projects (e.g., UV, Croton Filtration, and BNR upgrades). Because of efforts made, the forecast is now a 29% reduction target.

- Preliminary FY14 data shows an 8% reduction from FY13; from FY06-14: 10% reduction.

^FY14 Preliminary Data
*FY17 Projected Data
Carbon and Energy Management Strategies

Strategies:
- Energy conservation
- On-site clean energy generation
- Traditional Renewable Energy (i.e. hydro, solar PV)

Achieved through:
- Engineering/system changes +
- Organizational culture shift

Baseline vs. Planned Reduction vs. Potential Reductions:
- Baseline: 4,177 BTUs (in billions)
- Planned Reduction: 1,489 BTUs
 - Energy Conservation and Efficiency: 567 BTUs
 - Energy Generation from ADG (Off-site Use): 330 BTUs
 - Renewable Energy: 443 BTUs
 - Energy Generation from ADG (On-site Use): 149 BTUs
- Potential Reductions: 2,894 BTUs
 - Baseline: 2,290 BTUs
 - Planned Reduction: 439 BTUs
 - Potential Reductions: 165 BTUs

Note: Baseline Energy Use includes all building fuel energy use, averaged for FY09-11

Preliminary Data – for discussion purposes only
Associated GHG Impact – Agency-wide

Baseline	Planned Reduction	Potential Reductions	Gap
623,131 | 205,774 | 124,626 | 120,059

- Baseline: FY06 total emissions
- Planned Reduction:
 - Energy Conservation and Efficiency: 168,718
 - Energy Generation from ADG (Off-site Use): 26,099
- Potential Reductions:
 - Energy Generation from ADG (On-site Use): 847
 - Renewable Energy: 10,110
 - Energy Conservation and Efficiency: 134,268
- Gap:
 - 80 x 50 goal: 0

Note: Baseline is FY06 total emissions.
Focus on Wastewater Treatment

- 14 WWTPs all with anaerobic digestion
- Use almost 90% of the energy and contribute to about 94% of carbon emissions
- 3,500,000,000 ft³/yr digas produced
- Approximately 40% percent beneficially used
- 1.3M mmbtus available
- Equivalent to approximately 10,800 homes or 780 buses per year.
Energy Neutrality Potential

Energy Neutral Potential from Energy Generation on a Plant by Plant Basis

Note: Baseline Energy Use includes all building fuel energy use, averaged for FY09-11
Managing Waste More Sustainably

- Landfills are the third largest anthropogenic source of methane (CH₄) emissions in the United States
- CH₄ currently contributes to more than one-third of today’s anthropogenic warming
- Food Waste represents about 14.5% of municipal solid waste
- By diverting food waste from landfills and into existing WRRF digesters, communities can reduce greenhouse gas emissions and protect water quality

In an evaluation of food waste disposal options, the Water Environmental Research Foundation (WERF) identified co-digesting hauled-in food waste at WRRFs as the only carbon negative, i.e. greenhouse gas reducing, waste management strategy.

Parry, David L., Ph.D., P.E., BCEE. Sustainable Food Waste Evaluation. 2012. WERF OWSO5R07e
Food Waste Recycling – Mandates / Incentives

Municipalities: San Francisco, Seattle, Austin, Vancouver, New York City

2011:
• CT, Public Act 11-217 (updated in 2013)

2012:
• VT, Universal Recycling Law, Act 148 – all organics, largest generators first, effective 7/1/206

2013:
• CT: Public Act 13-285 (updated to 2011) – commercial organics, effective 1/1/14
• NYC: Local Law 146-2013 – large commercial organics, effective 7/1/2015

2014:
• MA: 310 CMR 19.000 Regulations – commercial organics, effective 10/1014
• RI: An Act Relating to Health and Safety – commercial organics, effective 1/1/2016
• CA AB 1826: Mandatory Commercial Food Waste Recycling (awaiting Governor’s signature)
• MD: Composting and Anaerobic Digestion Facilities – Yard Waste and Food Residuals (pending)
2,000+ Operational Biogas Systems Today

11,000+ Potential New Biogas Systems

<table>
<thead>
<tr>
<th></th>
<th>On Farm (Dairy and Swine)</th>
<th>Wastewater</th>
<th>At Landfills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>239</td>
<td>1,241</td>
<td>636</td>
</tr>
<tr>
<td>Total</td>
<td>8,000</td>
<td>2,440</td>
<td>450</td>
</tr>
</tbody>
</table>

U.S. Biogas Potential\(^1\)

- The methane potential is estimated at about 420 billion cubic feet.
- Could displace about 5% of natural gas consumption in the electric power sector and 56% in the transportation sector (EIA 2013).
- With lignocellulosic biomass resources future estimates reach 4.2 trillion cubic feet per year, which could displace about 46% of current natural gas consumption in the electric power sector and the entire natural gas consumption in the transportation sector.

<table>
<thead>
<tr>
<th>Category of Assessment</th>
<th>Qty</th>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Non-aggressive</td>
</tr>
<tr>
<td>AD Renewable Gas</td>
<td>AD Renewable Gas (Mdkthms/yr)</td>
<td>334.8</td>
</tr>
<tr>
<td>TG Renewable Gas</td>
<td>TG Renewable Gas (Mdkthms/yr)</td>
<td>631.8</td>
</tr>
<tr>
<td>AD + TG Renewable Gas</td>
<td>AD + TG Renewable Gas (Mdkthms/yr)</td>
<td>966.6</td>
</tr>
<tr>
<td>AD + TG Renewable Gas</td>
<td>AD + TG Renewable Gas (% of U.S. National Usage)*</td>
<td>4%</td>
</tr>
</tbody>
</table>

* This assumes a national usage of roughly 24 TCF of natural gas or 24 quadrillion BTU (for 2010)

AD = Anaerobic Digestion
TG = Thermal Gasification

Energy Content of Various Feedstocks

- Fats & Grease: 961
- Bakery Waste: 714
- Food Scraps: 265
- Corn Silage: 190
- Grass Silage: 185
- Green Clippings: 175
- Brewery Waste: 120
- Chicken Manure: 80
- Potato Waste: 39
- Pig Manure: 30
- Cow Manure: 25

m³ biogas production/tonne
Newtown Creek WWTP Renewable Energy Project

1. Off-site Screening & Pre-processing

2. On-site Receiving & Feed-in Station

3. Digestion & Gas production

4. Gas Cleaning System & Distribution System Injection
Overall Project Benefits

- Meets multiple environmental objectives
- Model for integrating renewable energy into dense urban environments
- The WWTP has enough capacity to digest up to 500 tpd of food scraps – 15% of the city’s residential organic waste or 8% of the city’s total food waste
- Will reduce GHG emissions by 90,000 metric tons per year (at 500 tpd)
 - Up to 500 tpd of food waste diverted from landfills – 54,500 MT CO$_2$(e) avoided
 - Up to 6,600 long-haul truck round trips per year will be eliminated – 2,300 MT CO$_2$(e) avoided
 - More than 600,000 dekatherms of thermal energy exported for beneficial use by the community – 32,400 MT CO$_2$(e) avoided
 - Elimination of flaring – 850 MT CO$_2$(e) avoided

Environmental Scorecard

<table>
<thead>
<tr>
<th>Metric</th>
<th>Score</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Capacity (tpd)</td>
<td>500</td>
<td>8% of city’s food waste</td>
</tr>
<tr>
<td>Aggregate Annual Generation (dekatherms)</td>
<td>600,000</td>
<td>Enough to heat 5,100 homes per day</td>
</tr>
<tr>
<td>Total MT CO$_2$(e)/ yr Avoided</td>
<td>90,000</td>
<td>Equivalent to taking 19,000 vehicles off the road</td>
</tr>
<tr>
<td>$/MT GHG Avoided</td>
<td>$270</td>
<td>$2,000$1</td>
</tr>
</tbody>
</table>

1. Internal benchmark across all classes of projects (not specific to co-digestion projects)
Co-digestion State of Knowledge

What is well understood:
- Addition of organic waste at appropriate concentrations increases both gas production and gas quality

What needs to be better understood:
- Impacts on digestion
 - Chemistry – pH and alkalinity
 - Foaming potential – stability and surface tension
 - Rheology - viscosity, yield stress, and shear rate and impacts on gas hold-up
- Impacts on dewatering
 - Polymer usage - cation/anion balance
- Centrate quality
 - Ammonia concentrations
- Cake quality
 - Odor potential
 - Pathogen regrowth potential
Sampling and Monitoring plan

- NYSERDA grant for $250k
- In-situ monitoring combined with laboratory testing
- Characterize bioslurry specifications, digester performance, and post digestion impacts

<table>
<thead>
<tr>
<th>Monitoring Plan</th>
<th>Pre-Treatment</th>
<th>Digestion</th>
<th>Post Digestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Solids</td>
<td></td>
<td>Organic Loading</td>
<td>Sludge Volume</td>
</tr>
<tr>
<td>Nutrient Levels</td>
<td></td>
<td>Methane Yield</td>
<td>Nitrogen Content</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>Mixing / Settling / Foaming / Gas Hold-up</td>
<td>Dewaterability</td>
</tr>
<tr>
<td>Volatile Solids</td>
<td></td>
<td>VA Production</td>
<td>Odors</td>
</tr>
<tr>
<td>Inorganic Contamination</td>
<td></td>
<td>HRT</td>
<td>Pathogen Regrowth</td>
</tr>
</tbody>
</table>

24
Energy increase example at 20% Food Waste Added

Total gas production increase (%) = 121%
Avg. methane increase (%) = 13%

150% increase in Net Energy Potential
Summary of Analytical Results

- Increase in ammonia and a reduction in volatile acids
 - Could impact centrate treatment for BNR plants
 - Digesters may be more sensitive to upsets – not during this study

- Process was stable based on pH, CH₄ generation, %VS destroyed, and VA/ALK ratio

- No foaming or process issues even at 25% FW replaced

- Increase in H₂S production
 - Possible need for additional gas treatment prior to use/sale

- No trend in siloxanes with %FW increase in feed

- Possible issue with incorporation of FW into TWAS

- Possible issues with struvite accumulation due to increase in pH
Thank you

Contact Information:

Anthony J. Fiore
NYC Department of Environmental Protection
Director – Office of Energy
Mayor’s Office of Sustainability
Interim Director of Energy Regulatory Affairs

afiore@dep.nyc.gov
Hon. Patricia Acampora, NY PSC

William Varley, American Water
Geothermal – A New Approach & Pilot

Honorable Patricia Acampora, New York
William Varley, Sr. Vice President, Northeast Division, American Water
Conventional Geothermal System
Geothermal Pilot System

Sanitary Sewer
500 foot, 12-inch Diameter

Diffusion Well

17’ x 13’ Equipment Building

Heat Exchanger

Water/Glycol Recirculation Pump

Geothermal Units
(two per classroom)

40,000 S.F. School

Geothermal Units
(two per classroom)

Water Main
Classroom Geothermal Units
Glycol Recirculation and Heat Exchanger
Heat Exchanger
Geothermal Pilot System

Sanitary Sewer
500 foot, 12-inch Diameter

Diffusion Well

17’ x 13’ Equipment Building

Heat Exchanger

Water/Glycol Recirculation Pump

40,000 S.F. School

Geothermal Units
(two per classroom)

Geothermal Units
(two per classroom)

Water Main
Geothermal System: Final Configuration

17' x 13' Equipment Building

Heat Exchanger

Water/Glycol Recirculation Pump

Geothermal Units (two per classroom)

40,000 S.F. School

Water Main
Summer Committee Meetings

Committee On Electricity
The Clean Power Plan, Demand Response, and Efficiency: Major Manufacturers Respond
Moderator: Hon. Edward Finley, NC

Paul Cicio, Industrial Consumers of America
David Ciarlone, Alcoa, Inc.
Darren MacDonald, Gerdau Steel
Susan Misconish, Timken Steel Corp.
Bruce Ray, Johns Manville Corp.
Larry Stalica, Linde, LLC
Paul Ciccio
Industrial Energy Consumers of America
Demand Response and EPA’s Clean Power Plan: “Industrial Perspective”

Presentation to NARUC
July 14, 2015

Paul N. Cicio
President
Industrial Energy Consumers of America
Industrial Energy Consumers of America

• The Industrial Energy Consumers of America is an association of leading non-partisan manufacturing companies with $1 trillion in annual sales. More than 1.2 million employees.

• Focused exclusively on availability, use and cost of energy and power.

• IECA membership represents a diverse set of mostly energy-intensive industries including: steel, iron ore, aluminum, commodity and specialty chemicals, fertilizer, paper, refining, food processing, glass, cement and plastics.
Manufacturing is Important to U.S. Economy

- Contributed $2.09 trillion to the economy.
- 12.0 percent of GDP.
- Supports 17.6 million jobs, one in six private sector jobs (12 million direct or 9 percent).
Manufacturing’s Multiplier Effect
For every one dollar – returns $1.35 in indirect economic activity

Source: Bureau of Economic Analysis, 2010 Annual Input-Output Tables
A Success Story: Industrial Energy Consumption has Been Relatively Flat for 44 Years, While Output has Increased 761%

Source: Energy Information Administration, AEO 2014
A Success Story: Industrial Energy Intensity Decreased by 46% Since 1987

Source: Energy Information Administration, Bureau of Economic Analysis
A Success Story: Industrial Sector – Only Sector with Lower CO2 Emissions than 1973 (22.4% below 1973)

Source: Energy Information Administration
Manufacturing Use of Energy

- 26% of total U.S. electricity
- 29% of total U.S. natural gas
- 5% of total U.S. coal

Energy-Intensive Trade-Exposed (EITE) industries consume 82% of the energy of the entire manufacturing sector!

Source: Energy Information Administration
The Energy-Intensive Industrial Sector is Unique

- The only sector that requires globally competitive energy.
- Electricity and natural gas intensive.
- Compete globally and in an environment of unfair competition / Other countries subsidize energy and manufacturing.
- Unlike other sectors – shift production or relocate facilities to be competitive.
Energy Price Sensitive Products are Essential for Economic Growth

<table>
<thead>
<tr>
<th>Building Block Industries</th>
<th>Convert to</th>
<th>Commercial & Consumer Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemicals</td>
<td></td>
<td>Food Production</td>
</tr>
<tr>
<td>Plastics</td>
<td></td>
<td>Automobiles</td>
</tr>
<tr>
<td>Fertilizer</td>
<td></td>
<td>Consumer goods</td>
</tr>
<tr>
<td>Glass / ceramics</td>
<td></td>
<td>Construction</td>
</tr>
<tr>
<td>Steel</td>
<td></td>
<td>Medical Supplies</td>
</tr>
<tr>
<td>Aluminum</td>
<td></td>
<td>Energy Production</td>
</tr>
<tr>
<td>Pulp and Paper</td>
<td></td>
<td>Appliances</td>
</tr>
<tr>
<td>Cement</td>
<td></td>
<td>Household products</td>
</tr>
<tr>
<td>Food Processing</td>
<td></td>
<td>Defense industries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Telecommunication</td>
</tr>
</tbody>
</table>
Industrial Electricity Demand
(Increases 15% from 2014-2025)

Source: Energy Information Administration, AEO 2015
Industrial Electricity Prices
(Increases 41% from 2014 to 2025)

GHG Regulation on Existing Sources: $2.2 billion/year, 2.3%+
*Ozone Regulation: $2.7 billion/year, 2.8%+

*Note: This analysis includes rules MATS, CAIR, most NSPS, and Tier 3 vehicle standards, amongst others.

Source: EIA, EIA AEO 2015, NERA, EPA, NAM
Henry Hub Natural Gas Prices
(Increases 107% from 2014 to 2025)

Henry Hub Natural Gas Price
GHG Regulations on Existing Power Generation Facilities
Ozone Regulation

Source: EIA, EIA AEO 2015, NERA, EPA, NAM

*Note: This analysis includes rules MATS, CAIR, most NSPS, and Tier 3 vehicle standards, amongst others.
Example of Industrial Leakage: When Natural Gas Prices Increased, Manufacturing Jobs Decreased (Natural Gas Prices Increased 209% from 1999 to 2008, or 23% a year)

Source: Energy Information Administration, Bureau of Labor Statistics
Energy Prices Significantly Contributed to the Loss of 5.1 Million Manufacturing Jobs (-29.4%)

- 54,905 Facilities Lost (Since 2011)
- Average Loss of 441,667 per Year: 2000-2010
- Jobs created from 2010-2014: 660,000

Source: Bureau of Labor Statistics
Industrial Perspectives on EPA’s Clean Power Plan
Industrial Perspective

- A major stakeholder. Will pay up to a third of the costs of implementation.
- Urge states to partner with industrials.
- Focus is on **cost-effective** implementation and policy that will support job creation.
- Allocation of costs is important. Allocation by volume negatively impacts high load factor industrial customers.
If State Electricity Prices Rise...

- Industrial “GHG leakage” will occur.
- Industrials will shift production to locations in other states, reducing load, shifting GHG emissions to other states, and increasing electric rates for the remaining electric consumers.
- If industrials cannot be competitive operating in the U.S., their offshore competitors will prevail.

➢ “A lose-lose for the economy and the environment.”
Industrial Perspectives on the CPP

- **State SIPs Filing Timing:**
 - Urge EPA to not require states to file SIPS until *after* judicial review.
 - Consumers will get stuck with all of the costs, including stranded costs.
 - Urge EPA to not require states to file SIPS until *after* there are federal model M&V rules for offset credits, energy efficiency, and renewable energy.
Industrial Perspectives on the CPP

- CO₂ Reduction Targets:
 - Set reduction target inside-the-fence line, but use outside-the-fence line reduction options if they are less expensive.
 - Outside-the-fence line reduction options should be voluntary, not mandatory.
 - Support 2005 baseline year.

- Energy Efficiency:
 - Opportunity is in res-comm buildings, not industrial EE.
 - Industrials must be able to opt-out and maintain ownership of EE-based reductions (RECs).
 - Use attainable EE assumptions (cost and availability).
Industrial Perspectives on the CPP

- Support Industry & Jobs:
 - *CPP must not set precedent for regulating industrial GHG emissions.*
 - Include a cost safety valve.
 - Include a reliability safety valve.
 - *Support ratable emission rates, allows for economic growth.*
 - Provide credit for actions already taken.
 - Consider CHP/WHP as a compliance option.
 - Exclude industrial CHP/WHP emissions from regulation under CPP.
Support Jobs:

- Avoid Leakage
 - Before finalizing SIPS, complete industrial GHG leakage study to understand impact to the state economy, jobs, and GHG emissions.
 - Seek to ensure that imported products share at least the same economic impact from CPP costs.

Reduce Cost

- Eliminate the 2020 interim target.
- More time will reduce costs, especially stranded costs.
Energy Efficiency
Industrial Sector Has Best Record on Energy Intensity

- EIA data confirms that the industrial sector has perhaps the best record on energy intensity reduction – 46% reduction since 1987. Reasons for this include:
 - Energy-intensive industries are often trade exposed.
 - Competition drives energy efficiency improvements
 - *Must continuously analyze how to cost-effectively reduce energy usage*
 - Most have professional energy, engineering, and finance staff.
 - All are experts on their processes and equipment.
 - And most have access to capital funds for energy reduction projects that meet company-specific timing, process, and ROI requirements.
 - Most low-hanging fruit harvested long ago.
Industrial Energy Efficiency Policy

- Must have ability to opt-out of utility rate programs including allocation of program costs.
- Oppose mandates that would require facilities to certify as, for example, ISO 50001. (Costs $200,000 - $300,000 per facility or more.)
- Support voluntary programs like EPA Industrial Energy Star Program.
Buildings Provide Best Opportunity for Energy Efficiency

- Buildings consume 41% of our nation’s energy (22% commercial; 19% residential). (EIA)
- U.S. buildings is largest consumer of electricity – 71%. (EIA)
- Accounts for over 40% of U.S. GHGs. (EIA)
- McKinsey study concluded that building insulation is single most cost-effective solution to reduce GHGs.
Residential Energy Efficiency Improvement Has Lagged

- Tens of millions of energy inefficient existing homes.
- New construction
 - Codes have advanced slowly and are not consistently adopted or enforced.
 - Split incentive: home builders have a tendency to reduce upfront purchase price by increasing home buyers’ energy operating expenses.
Address Issues to Harvest Residential EE Opportunity

- Implement better education/outreach.
- Provide better funding.
 - Utility residential ratepayer dollars under new utility models
 - Air quality improvement programs
- Deploy new products and EE upgrade installation approaches that increase contractor productivity, reduce homeowner inertia.
- Clarify ownership of energy savings benefits, especially of utility emissions reductions.
- Ensure effective integration of non-utility energy efficiency contractors and projects into CPP compliance programs.
Demand Response
Demand Response Programs? What Do We Mean?

IECA companies participate in all forms of Demand Response programs across the country include energy, capacity and ancillary services:

1. Interruptible contracts or tariffs (stand by credit)
2. Peak shaving (reduce demand charges)
3. Peak Avoidance (reduce Capacity and/or Transmission obligation)
4. Economic Demand Response (curtailing during high prices)
5. Load Shifting (reduced costs by operating during off peak periods)
6. Dispatchable Load/Synchronized Reserve (market-based programs)
7. Regulation Service
8. Self-Generation
Demand Response is Not New!

- Interruptible Contracts (Historically)
 - Today it’s a Tariff, a Contract or a Market-based solution.
- Utilities use Interruptible Contracts for energy, capacity, emergency, transmission congestion, regulation and spinning reserve and now RAMP
 - Avoid building expensive new generation that may only be required for a few hours each year.
 - Emergency, Reliability or Economics drive notice and compensation.
 - Utilities “call” the curtailment and provide energy payments or capacity credits to participants roughly equal to the utilities long-range replacement capacity costs.
- Unbalanced stakeholder environments to replace or expand on the traditional interruptible contracts
Market Solutions for DR are Relatively New with Enhanced Results

Potential benefits of demand response:

- Increased competition
- Operational savings
- Lower market prices
- Reduced price volatility
- Improved grid reliability
- Improved customer options
- Providing ancillary services
- Positive environmental benefits

- Q1 2014 demonstrated the value that DR brings
- Curtailing consumption is more reliable than starting production

Source: Slide from PJM Training Manual on Load Response
Demand Response During Polar Vortex

Notes:
1. DR events dispatched during non-compliance period.
2. Expected Energy Load Reductions (MW) - CSP reported estimate based on current market rule.
3. MW value is average hourly load reduction for non-ramp in hours.
Demand Response (DR)

Agenda

NARUC’s questions:

1. Is it preferable to work with an aggregator or directly with a utility?

2. How does a company decide to participate? What would cause a company to stop participating?

3. When they are called upon to interrupt, how do they comply? (by shutting down early? Switching to a diesel generator?)

4. What do you think of Order 745 and the prospect of all DR being state jurisdictional?

5. IECA’s recommendations.
Is it Preferable to Work with an Aggregator or Directly with a Utility?

- **Best to do it yourself.**
 - For large, sophisticated manufacturers, be your own Curtailment Service Provider.

- **Retain the value.**
 - Aggregators and utilities both extract a portion of the value stream anywhere from 5% to 40%.

- **Maintain independence.**
 - Avoid being served by those who own generation.

- **Aggregators.**
 - Can work with res/com to emulate a larger load.
How Does a Company Decide to Participate? What Would Cause a Company to Stop Participating?

- **Economic Value**
 - Must exceed the combination of direct costs, opportunity costs and risk.

- **Direct Cost**
 - Production loss - production made up in a lower cost hour or *not at all*?
 - Efficiency loss - Focus off of making widgets and involves the plant Senior Management Team.

- **Risk**
 - *Start-up risk* of complex operations.
When They are Called Upon to Interrupt, How Do They Comply?

- **Market Interface**
 - Event notification, offer submissions, bill reconciliation, performance evaluation.

- **Operator Interface and Control**
 - PLC controlled response, operator training, over-rides for safety and environment.

- **Plant procedures and Manuals**
 - Developed and training for curtailment is conducted.

- **Key Performance Indicators**
 - Developed and plant staff and operators are measured on how well they “manage” our participation in the market.
Cost/Complexity of Compliance

- **Bidding strategy**
 - Optimization of power market vs. widget market economics.
 - Strike Price - The plants determine strike prices for the industrial facility and curtail operations when certain conditions are met.
 - This is often an iterative process depending on the # of hours curtailed, inventory, plant conditions, etc.

- **Market Monitoring**
 - Software is utilized (internal/external) and public information on ISO websites is monitored for market prices, market demand, weather, generator outages, emergency messages
Price Response

- **Myth**
 - Customers who desire to only consume electricity below certain thresholds can price-watch and be successful – “it’s easy”.

- **Reality**
 - Real time prices fluctuate every 5 minutes, and the actual price isn’t known until after the energy is consumed.

- **Efficiency Impact**
 - 5 minute dispatch might be most economically efficient for generation, but it has the opposite effect on load.
 - This is a prime example of why DR needs to be integrated into the market.
DR Integration Example: PJM DAEDR

- **Schedule** - Determine Day Ahead if economic to operate
- **Efficient Dispatch** - ISO dispatch solves for the facilities response
- **End-user efficiency**
 - Enables staffing and maintenance decisions
 - Minimizes wear and tear on equipment
 - Ensures recovery of the costs of curtailing during high priced periods
- **Grid reliability** - Provides EGU planning certainty to the ISO
- **Maximizes DR** - Increases load reduction availability thereby providing additional system and cost reduction benefits to all customers
- **Reduces cost** - The costs are reduced for those that don’t respond (homeowners) – totally in the public interest
What Do You Think of Order 745 and the Prospect of All DR Being State Jurisdictional?

“the Court argued, demand response is not actually a source of generation; it does not involve a direct sale of energy to the wholesale markets by consumers, who ‘’participate’ only by declining to act.’” Rather, consumers engaging in demand response were being given preferential treatment by the FERC, being paid the LMP and saving on the avoided cost of electricity. This, the court ruled, overcompensates demand response.

- This couldn’t be further from reality. As we have discussed, industrial participation in DR is “active” participation.
IECA Position on 745 Issue

- Large industrial customers support FERC Order 745.
- Order 745 finally achieved MW=NW (equal pay for equal work).
- Dr. Alfred E. Kahn recognized in his affidavits in that rulemaking, “full LMP” compensation for demand response was appropriate.
- Full LMP also reflects the marginal value to the system operator of the demand response that is being provided.
- IECA agrees with the PJM and MISO industrial groups, which have been actively participating in the D.C. Circuit and now U.S. Supreme Court appellate litigation.
- Moving demand response activity to the states raises several challenging issues:
 - Compensation - Where do states get the funding?
 - State Coordination – Inconsistent policy across RTOs
 - Legal barrier? - Circuit Court decisions on New Jersey LCAPP law?
IECA DR Recommendations

- Demand Response works and adds value and reliability
- Long term price signals promote the most DR
- DR programs improves competition, lower costs for all consumers, lower emissions and increases reliability.
- Cost allocation methodology sends important signals to incent the efficient use of the grid
 - (kW vs kWh) kWh charges mutes signal for demand response and allocates more to high load factor customers (new capacity, env upgrades, RPS).
 - Pass through signals to the end-user, don’t stop at the class.
 - Demand Charge = Demand Credit
 - Coincident Peak allocation for Capacity and Transmission cost allocation.
Proposed Federal Legislation to Modernize PURPA

- PURPA standards for cogeneration should not be altered and exempt from proposed legislation that appears to be targeted at renewable energy projects.
- IECA welcomes the opportunity to address PURPA at future NARUC meeting.
Thank You!

Industrial Energy Consumers of America

1776 K Street, NW, Suite 720
Washington, DC 20006
202-223-1661
pcicio@ieca-us.org
NARUC
Summer Committee Meetings

Committee On Electricity
Electricity Committee Business Meeting

Welcome: Chair Ackerman, Oregon
Co-Vice Chair Finley, NC

Subcommittee Reports:
Chair White, MI, Nuclear Issues/Waste Disposal Subcommittee
Chair Kalk, ND, Clean Coal and Carbon Management Subcommittee
Consideration of Resolutions

Resolution Honoring Eric Callisto of Wisconsin
Resolution Honoring David Littell of Maine
Resolution Honoring Kelly Speakes-Backman of Maryland
Resolution Honoring Robert Kenney of Missouri
Resolution Honoring Doug Scott of Illinois
Other Reports:

Brad Ramsay, NARUC
Jennifer Murphy, NARUC
Miles Keogh, NARUC
Gerry Cauley, NERC
Raj Barua, NRRI
S. William Becker, Nat’l Assoc. of Clean Air Agencies
Barbara Tryan, EPRI
Katrina McMurrian, Critical Consumer Issues Forum
Committee On Electricity