Office of Clean Coal and Carbon Management

David Mohler
Deputy Assistant Secretary
U. S. Department of Energy

July 2015
Office of Fossil Energy

Office of Clean Coal and Carbon Management

Office of Oil and Gas

Strategic Petroleum Reserves

National Energy Technology Laboratory
David Mohler
Deputy Assistant Secretary

Previously:

- Senior Vice President and Chief Technology Officer, Duke Energy
- Vice President of Strategic Planning, Cinergy

M.A., Xavier University of Cincinnati
M.S., University of Pennsylvania
B.A., Indiana University
B.S., University of the State of New York at Albany
Office of Clean Coal and Carbon Management

<table>
<thead>
<tr>
<th>CO₂ Capture</th>
<th>CO₂ Storage</th>
<th>Advanced Energy Systems</th>
<th>Crosscutting Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost effective capture for new and existing plants</td>
<td>Safe, permanent storage of CO₂ from power and industry</td>
<td>Gasification, Advanced turbines, Advanced combustion, CBTL, and fuel cells</td>
<td>Crosscutting technology development program</td>
</tr>
</tbody>
</table>
Rebalance the value equation for CO₂
 • R&D portfolio
 • 7 major demonstrations

Quantify/demonstrate/document the viability of long term geologic storage of CO₂, including via enhanced oil recovery (EOR)
 • 7 regional partnerships

Design/implement international collaborations to increase cooperation on carbon capture and sequestration (CCS) technologies
 • Promote bilateral partnerships for R&D collaboration with an emphasis on large scale projects
 • **Key partners:** China, Japan, UAE, Norway, UK, Canada, others…
 • Provide leadership in multilateral forums to develop CCS policy, leverage R&D platforms, and enhance information sharing/exchange of best practices (i.e., test center networks)
 • **Key partners:** CSLF, IEA, GCCSI, others…

Innovate new power systems to increase efficiency
Over time the electricity mix shifts toward natural gas and renewables, but coal remains the largest fuel source.

Source: EIA, Annual Energy Outlook 2014 Early Release
Advanced CCS Technologies are Critical to Reducing Global CO$_2$ Emissions

Baseline emissions 57 Gt

BLUE Map emissions 14 Gt

- CCS 19%
- Renewables 17%
- Nuclear 6%
- Power generation efficiency and fuel switching 5%
- End-use fuel switching 15%
- End-use fuel and electricity efficiency 38%

WEO 2009 450 ppm case
ETP2010 analysis

- EPA to develop and enforce regulations to protect the public from airborne contaminants known to be hazardous to human health
- Early regulations focused on pollutants such as SO2, NOx, Mercury, and PMs from coal plants
- Newly proposed regulations 111(b) and 111(d) address carbon dioxide pollution
There are three broad categories of CO$_2$ capture technologies that can be applied to power plants

Post-Combustion Capture
Primarily applicable to conventional coal- or gas-fired power plants. In a typical coal plant, fuel is burned with air in a boiler to produce steam.

CO$_2$ is separated **after the fuel is combusted** using sorbents, solvents or membrane systems.

Pre-Combustion Capture
Primarily applicable to gasification plants, where solid fuel (coal, biomass, or coal/biomass mixture) is converted into gaseous components.

CO$_2$ is separated **prior to combustion**. Also decades old technology base applied commercially world-wide.

Oxy-Combustion
Coal is combusted with relatively pure oxygen diluted with recycled CO$_2$ or CO$_2$/steam mixtures. Under these conditions, **the primary products of combustion is water and a highly concentrated CO$_2$ stream**. The CO$_2$ is separated from water vapor by condensing the water through cooling and compression

Suitable for new plants and for retrofits

Chemical Looping is a variant of oxy-combustion
CO₂ is captured and concentrated from large sources, then injected deep underground.

Capture: Power plants and industrial sources
- Pre-combustion
- Post-combustion
- Oxyfired combustion
- Chemical looping

Storage: > 1km depth
- Porous & permeable units
- Large capacity
- Good seals and cap rock

Two main targets
- Saline formations (~2200 Gtons capacity in N. Am.)
- Enhanced oil recovery (~100 B bbls addl. recovery)
FE manages 8 major demonstration projects to advance capture technologies

<table>
<thead>
<tr>
<th>Partnership</th>
<th>Project</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Air Products</td>
<td>Steam Methane Reformer Hydrogen Production. EOR utilization ~925,000 MT/year</td>
<td>Operations</td>
</tr>
<tr>
<td>2 Southern Company Services (Kemper)</td>
<td>Integrated Gasification Combined Cycle (IGCC). EOR utilization ~3,000,000 MT/year</td>
<td>Under Construction</td>
</tr>
<tr>
<td>3 Archer Daniels Midland</td>
<td>Ethanol Fermentation CO2. Saline storage ~900,000 MT/year</td>
<td>Under Construction</td>
</tr>
<tr>
<td>4 NRG Energy (Petra Nova)</td>
<td>retrofit Pulverized Coal Plant. EOR utilization ~1,400,000 MT/year</td>
<td>Under Construction</td>
</tr>
<tr>
<td>5 Summit Texas Clean Energy Project</td>
<td>Integrated Gasification Combined Cycle Polygeneration. EOR utilization ~2,200,000 MT/year</td>
<td>Financing</td>
</tr>
<tr>
<td>6 Leucadia Energy, LLC</td>
<td>Methanol from Pet coke Gasification. EOR utilization ~4,500,000 MT/year</td>
<td>Front End Engineering & Design</td>
</tr>
<tr>
<td>7 FutureGen 2.0</td>
<td>Oxycombustion Pulverized Coal Boiler Retrofit. Saline storage ~1,000,000 MT/year</td>
<td>Front End Engineering & Design</td>
</tr>
<tr>
<td>8 Hydrogen Energy California (HECA)</td>
<td>Integrated Gasification Combined Cycle Polygeneration. EOR utilization ~2,570,000 MT/year</td>
<td>Front End Engineering & Design</td>
</tr>
</tbody>
</table>

- Portfolio represents both EOR and storage in saline aquifers
- Portfolio includes industrial and power capture
- Portfolio includes pre-, post-, and oxy-combustion capture
Commercial scale CCS Demonstrations are major industrial projects

Kemper County Energy Facility
Collaboration with Southern Company
- 582 MW plant
- $4.7 billion total project cost
 - DOE share: $270 million
- Plant construction: 95% complete; more than 3,500 construction workers on site
- Approximately 67% carbon capture (3,000,000 tons of CO₂ per year for EOR)
CO₂ Capture Demonstrations: Program highlights

Air Products Industrial Capture to EOR
Port Arthur, TX (Hydrogen plant at Valero Refinery)
90%+ CO₂ capture (Vacuum Swing Adsorption) from 2 steam methane reformers yielding ~925,000 tonnes CO₂/year
CO₂ delivered for EOR in West Hastings oil field
Total Project: $431 million. DOE share: $284 million
Project executed on time and under budget. +700k hours with no lost time incidents.

Archer Daniels Midland, Ethanol Capture and Saline Storage
Decatur, Illinois
90%+ capture from ethanol fermentation, compression, and injection into saline formation
Design: ~1,000,000 tonnes CO₂/year; injection directly under project site (100% Saline)
Project nearly completed; Second Class VI permit issued by EPA (Region 5)
Operations: Early-2015
Total Project: $207 million. DOE share: $66 million

Petra Nova (NRG) Advanced Post Combustion Capture Retrofit
Thompsons, TX
240 MWe slipstream at NRG’s W.A. Parish power plant (scaled up from original 60 Mwe)
90% CO₂ capture ~1,400,000 tonnes CO₂/year (2.2 MT to EOR, 0.5 MT to urea)
EOR: Hilcorp West Ranch Oilfield
Total Project: $1 billion. DOE share: $167 million
Achieved financial close and began construction July 15, 2014
CCS Best Practices Manuals

Critical Requirement For Significant Wide Scale Deployment - Capturing Lessons Learned

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring, Verification and Accounting</td>
<td>2009/2012</td>
<td>2016</td>
<td>2020</td>
</tr>
<tr>
<td>Public Outreach and Education</td>
<td>2009</td>
<td>2016</td>
<td>2020</td>
</tr>
<tr>
<td>Site Characterization</td>
<td>2010</td>
<td>2016</td>
<td>2020</td>
</tr>
<tr>
<td>Geologic Storage Formation Classification</td>
<td>2010</td>
<td>2016</td>
<td>2020</td>
</tr>
<tr>
<td>Simulation and Risk Assessment</td>
<td>2010</td>
<td>2016</td>
<td>2020</td>
</tr>
<tr>
<td>Carbon Storage Systems and Well Management Activities</td>
<td>2011</td>
<td>2016</td>
<td>2020</td>
</tr>
<tr>
<td>Terrestrial</td>
<td>2010</td>
<td>2016 – Post MVA Phase III</td>
<td></td>
</tr>
</tbody>
</table>
Regional Carbon Sequestration Partnerships

- Geology: Projects represent six of eleven identified depositional environments in the United States.
- Storage methodology: Projects include EOR and saline aquifer storage
- Preceded by 20 small-scale projects that cumulatively injected over 1 million tonnes

### Partnership	Project	Status
1 | Big Sky Carbon Sequestration Partnership | Saline storage of naturally occurring CO₂ (1 million tonnes over 4 years) | Site operations; Injection 2014
2 | Midwest Geological Sequestration Consortium | Saline storage of CO₂ from ADM biofuel production (1 million tonnes over 3 years) | Injection began Nov. 2011
3 | Midwest Regional Carbon Sequestration Partnership | EOR using CO₂ from gas processing plant (1 million tonnes over 4 years) | Injection began Feb. 2013
4 | Plains CO₂ Reduction Partnership | 1) Project 1: EOR using CO₂ from ConocoPhillips Gas Plant (1 million tonnes over 2 years) 2) Project 2: Saline storage of CO₂ from Spectra Energy gas processing plant (1.3 million tonnes over 2 years) | 1) Injection June 2013 2) Site operations; injection 2015
5 | West Coast Regional Carbon Sequestration Partnership | Regional Characterization | No large-scale injection
6 | Southeast Regional Carbon Sequestration Partnership | 1) Project 1: Saline leg of EOR; storage natural CO₂ (Over 3.6 million tonnes by Sept. 2014) 2) Project 2: Saline storage of amine captured CO₂ from coal-fired generation (250,000 tonnes over 2 years) | 1) Injection began 2009 2) Injection began Aug. 2012
7 | Southwest Regional Partnership on Carbon Sequestration | EOR storage of CO₂ from fertilizer and ethanol plants (1 million tonnes over 5 years) | Site operations; injection late 2013