Staff Subcommittees on Electricity, Gas, Energy Resources and the Environment, & Electric Reliability
Subcommittee Chairs

Kim Jones – Electricity
Pat Poli – Electric Reliability
Andreas Thanos – Gas
Karen Olesky – Energy Resources & the Environment
How to Heat a Home?
HOW TO HEAT A HOME

JULY 2016
1. ERI Path
2. Affordability
3. New Homes
4. Fuel and Technology
5. New Technologies
6. Advantages of Solar
7. 2015 International Energy Conservation Code
• Energy Rating Index measures total energy consumption (like miles per gallon for a car)

• Score from 100-0, and 100 is a home built under the 2006 IECC

• 2009 IECC backstop for envelope and is 15-20% more energy efficient than 2006 IECC

• No difference in code for multi-family versus low-rise residential

• All new homes are required to bring in air from outside by current code due to efficiency mandates requiring a tighter envelope, because tighter envelop

• Adopted by Alabama, Denver (Colorado), Illinois, Maryland, Michigan, New Jersey, New York, Texas, Utah, Vermont, Washington and Florida in process now
• Energy Code regulations have increased cost of home by ~$7,000 in the last three code cycles

• Increase homes by $1,000, then an immediate 206,000 potential home owners are priced out (see link below)

• Conversely, if reduce the cost of a home by $1,000 then 206,000 potential home owners can now afford a new home

• Homebuilders constantly looking for flexibility to meet these regulations and in the most cost-effective manner
Historically, space heating was 60-65% of a home's total energy consumption, but today it is below 50%.

Plug-loads are consistently making up a higher percentage of the overall consumption, and eroding energy efficiency measures.

95% of new homes are heated using natural gas, however, other technologies include heat pumps, electric heaters and fuel.

A/C for space cooling, with natural gas for space heating is still the preferred, more economical package except in very hot climates.

| **NATURAL GAS** | • Most efficient heating source; burned at consumption point
• Newer furnaces are ~96% efficient
• Ideal for location where heating demand is high
• New furnaces are power vented, reducing risks associated with chimneys |
| **HEAT PUMPS** | • Work just like an air conditioner (bring in outside air)
• Cold coil becomes a hot coil
• Becoming much more efficient
• Outside temperature affects a heat pump’s efficiency |
| **ELECTRIC HEATING** | • Ideal for locations where heating demand is low like Florida
• Coupled with solar technology in Orlando, FL (first of its kind) |
NEW TECHNOLOGIES

HYBRID HEAT-PUMP WATER HEATERS

- Price Range: ~$1,000
- Most Efficient by 3X
- Goal: Couple with Solar

TANKLESS GAS HEATERS

- Price Range: ~$600
- Tank Water Heater $300

HIGH EFFICIENCY GAS AND WATER TANKS

- Price Range: Too Expensive
- Dual App: Space and Water Heating
• Purchase or Lease for 20 years
• Typical System 4-5kW
• Produces up to 60% of the home's electricity
• AO Smith Voltex 50-gallon hybrid electric water heater
• First program of its kind in Florida
• 2015 IECC allows for a more options and more market-based compliance path under the “alternate compliance path” – leverages solar and efficient HVACs

• Direct use of natural gas seen as most efficient and economical

• At least 1/3 of New homes are 35%-40% of more energy efficient than in 2006 (RESNET Data)

• ERI is good policy because it doesn’t tie us to one compliance path; allows us to use most cutting edge technologies which rewards innovation
Jeremy L. Susac
Vice President
Government Affairs
jeremy.susac@lennar.com
730 Northwest 107th Avenue
Miami, FL 33172
Residential Heating Systems

Rafi Sohail
Director, Regional Sales and Technical Support

NARUC – July 24, 2016

Contact:
Phone: 612-321-4779
Email: Rafi.Sohail@CenterPointEnergy.com
About CenterPoint Energy (CNP)

- Nation’s top tier publicly traded natural gas and electric delivery company.
- 3.4 million natural gas utility customers in six states: AR, LA, OK, MN, MS, and TX.
 - Natural Gas energy efficiency program in four states: AR, MN, MS, and OK
- 2.3 million electric utility customers in Houston area and offers electric energy efficiency programs.
Residential Heating Systems
Selection Criteria

- Reliability of the system to operate when needed
- Durability of the system to last longer
- Minimum maintenance requirements
- Equipment and installation costs
- Operating costs savings
- Efficiency
- Environmental Benefits – low emissions
Residential Heating Systems
Natural Gas Technology Solutions

Residential – Single Family and Multi-family Options:

- **Furnace/Boiler**: Non-Condensing (~ 80% AFUE)
- **Furnace/Boiler**: Condensing (≥ 90% AFUE)
- Packaged HVACs
- Compact Furnaces and Boilers
- Combined Space and Water Heating
Residential Heating Systems
Natural Gas for Heating

Source: U.S. Energy Information Administration - DOE, based on CBACS, September 2014
Residential Heating Systems
Single-family Space Heating

• Single family (new construction) gas space heating market share compared to electric heating (CNP territory):
 - North: ≥ 98%
 - South: ≤ 60%

• Single family - types of gas heating systems:
 - North: Almost all are condensing (HE) furnaces
 - South: ≥ 90% are non-condensing (standard) furnaces.
Residential Heating Systems
Multi-family Space Heating

- Multi-family (new construction) gas space heating market share compared to electric heating (CNP territory):
 - North: ≥ 95%
 - South: ≤ 10%

- Multi-family - types of gas heating systems:
 - North: 80% are non-condensing packaged or small furnaces; 20% are centralized boilers.
 - South: 99% are non-condensing packaged or small furnaces.
Residential Heating System Equipment and Install Cost

<table>
<thead>
<tr>
<th></th>
<th>Natural Gas Non-Condensing Furnace</th>
<th>Natural Gas Condensing (HE) Furnace</th>
<th>Electric Air Source Heat Pump</th>
<th>Electric Resistance Heater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>80% AFUE</td>
<td>92% AFUE</td>
<td>8.5 HSPF</td>
<td>98% AFUE</td>
</tr>
<tr>
<td>MMBtu output heat requirement</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Annual Operating Costs</td>
<td>$472</td>
<td>$411</td>
<td>$588</td>
<td>$1,142</td>
</tr>
<tr>
<td>First Cost</td>
<td>$1000 to $2,500</td>
<td>> $600 Incremental Cost to non-condensing Furnace</td>
<td>Comparable to gas furnace</td>
<td>Cheaper than gas furnace</td>
</tr>
<tr>
<td>Environmental – CO2 Emissions - Metric Ton / Yr.</td>
<td>2.0</td>
<td>1.7</td>
<td>2.6</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Source: U.S. Average Residential Gas and Electricity in 2015 per EIA-DOE. Assuming Zone 4 single family home. CO2 Emissions based on eGRID and AP 42 Report per EIA - DOE
Carbon Footprint: A measurement of Greenhouse Gases (GHG) produced through the direct or indirect consumption of fossil fuels.

Measured in lbs or metric tons of CO₂ equivalent.
Residential Heating Systems
Natural Gas as Heating Option

- Affordable
- Comfortable
- Abundant
- Better for the Environment
- Economic Development/ Energy Security
- Domestic

CenterPoint Energy
How to Heat a Home?
NARUC - 2016

Bob Stoyko
Vice President Marketing & Customer Relations
UGI Utilities, Inc.
UGI Utilities serves a large portion of PA

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Gas Customers</td>
<td>606,000</td>
</tr>
<tr>
<td>Total Electric Customers</td>
<td>62,000</td>
</tr>
<tr>
<td>Miles of UGI Gas Main Infrastructure</td>
<td>13,000 miles</td>
</tr>
</tbody>
</table>
Conversions to-from Natural Gas

Conversions to (green) and from (red) natural gas from 2000-2010
(the darker the color, the greater number of conversions that may have occurred)

Source: U.S. Census Bureau
Residential Savings Gas vs. Oil

Natural Gas, No.2 Fuel Oil, and Electricity Fuel Prices

- No.2 HISTORICAL NYMEX CLOSE $/MMBTU
- NAT GAS HISTORICAL NYMEX CLOSE $/MMBTU
- ELECTRICITY PA HISTORICAL CLOSE $/MMBTU

Futures
More than 90% of the natural gas UGI Utilities delivers to our customers is produced in the Marcellus Shale Region
 • Marcellus NG priced at +33% discount to NYMEX

Compared to 2008, UGI customers saved $343MM in 2015, attributable to lower priced gas from Marcellus Shale

In 2015, the 53,000 households that recently converted to natural gas saved approximately $91MM
Natural Gas Economics 101

Average HVAC Equipment Installed Costs:
- Natural Gas Furnace/Electric A/C - $6,700 - $9,000
- Electric Heat Pump - $6,000 - $10,100

HVAC equipment selection and fuel choice economics vary based on location.
Source to Site Energy Efficiencies

Electricity

30% Efficient

100 MMBtu Source Energy

- 5

95

- 61

34

- 4

30

Conversion

Extraction, Processing & Transportation

Distribution

Delivered To Customer

Natural Gas

92% Efficient

100 MMBtu Source Energy

- 7

No Conversion Necessary

0

93

- 1

92

Three times more energy reaches the customer with natural gas.
What is CHP and CCHP?

- CHP stands for Combined Heat and Power.
- CHP is the **sequential** production of **power** and **useful thermal** energy from a single energy source.
- CCHP stands for Combined Cooling, Heating and Power.
Small Scale CHP Compared to Renewables

<table>
<thead>
<tr>
<th>12,000 Sq Ft - 10 KW DE System</th>
<th>Solar - PV</th>
<th>Wind</th>
<th>CHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed Cost ($/KW)</td>
<td>$5,300</td>
<td>$6,000</td>
<td>$7,280</td>
</tr>
<tr>
<td>Annual Savings (/KW installed)</td>
<td>$156</td>
<td>$216</td>
<td>$592</td>
</tr>
<tr>
<td>Space Required (Sq Ft/KW installed)</td>
<td>76</td>
<td>785</td>
<td>1.4</td>
</tr>
<tr>
<td>CO2 Saved (/KW installed)</td>
<td>1,871</td>
<td>2,588</td>
<td>6,502</td>
</tr>
<tr>
<td>Ave. hours /year at max power</td>
<td>1,550</td>
<td>2,175</td>
<td>8,311</td>
</tr>
</tbody>
</table>

A small commercial application was evaluated for 10 KW of CHP compared to wind and solar power. The installed cost for CHP was slightly higher than wind or PV.

The annual cost savings, Carbon savings and space savings with CHP far exceeded wind and solar power.
Residential CHP Application

Greenwich, Connecticut

• Two floor family home of 9,000 Ft2 (464.5m2)
• Full in-floor radiant heating system in the house Sept to May.
• 28,000 gallon pool @ 85°F from May to Sept
• In 20 months of CHP usage:

40 MWh of electricity with total energy cost savings of $9,000
Other Types of CHP Systems

- **Fuel Cells** - available in sizes ranging from 5 KW to 3 MW
 - Very High Fuel Efficiencies with zero carbon
 - Equipment is costly, but financially viable in certain applications

- **Stirling engines** - available in sizes ranging from 1 KW Very High Fuel Efficiencies
 - CHP efficiency up to 90%
 - Expected market growth in the future
Natural Gas Fired Heat Pump

- Economic and environmentally friendly option, especially for larger homes (>4,000 sq. ft.)
- Can achieve COPs up to 2.0
 - Conventional water heater: .85
- Can recover additional waste heat to drive efficiencies +30% more than electric-motor heat pumps
QUESTIONS?

Bob Stoyko
Vice President Marketing & Customer Relations
UGI Utilities, Inc.
rstoyko@ugi.com
NARUC 2016 Summer Committee Meetings

Maximizing Home Heating Alternatives in Multi-Family Residences

IOWA OFFICE OF CONSUMER ADVOCATE

Mark Schuling, Consumer Advocate (515) 725-7200

July 24-27, 2016, Nashville, TN
Office of Consumer Advocate

- The Iowa Consumer Advocate acts as attorney for and represents all consumers generally and the public generally in all proceedings before the Iowa Utilities Board.

- Iowa OCA has a staff of seven lawyers, three support staff, and nine technical staff, including economists, financial analysts and engineers.
Multi-Family Discussion

- Market Barriers
- Energy Efficiency Options
- Landlord-Tenant Pilot Project including Master Metering
- Renovation Project including Master Metering
- Multi-Family Best Practices
Market Barriers

• Split Incentive
• Trust on Energy-Savings Calculations
• Lack of time in construction process or limited time in Emergency Replacements
Energy Efficiency Options

• Prescriptive and custom rebates for common areas based on Commercial programs.
• Prescriptive and custom rebates for residential units based on Residential programs.
• Enhanced rebates for low-income properties.
Landlord-Tenant Pilot Project

• Applicant with long track record of energy efficient and cost effective strategies.
• Requests Master Metering for certain energy saving strategies.
• Pilot created for Master Metering with revised residential rate.
Renovation Project including Master Metering

- Electric Master Metering requested for commercial/residential renovation.
- Installing centralized energy plan. Agreements reached on gas and water.
- Finding was insufficient evidence to support Master Metering.
Multi-Family Best Practices

• Cash incentives to building owners.
• Per unit and high performance incentives.
• Low-cost financing.
• Higher rebate for low-income properties.
• Target specific program elements to Multi-Family properties.
Questions
Full Fuel Cycle Analysis

Ron Edelstein
July, 2016
NARUC Meeting
GTI Overview

ESTABLISHED 1941 (Gas Research Institute est. 1977)

> Independent, *not-for-profit* company established by natural gas industry

> Providing natural gas research, development and technology deployment services to industry and government clients

> Performing contract research, program management, consulting, and training

> Facilities
 — 18 acre laboratory in Des Plaines
 — 200,000 ft² with 28 labs

> Staff of 250

> Wellhead to the burner tip including energy conversion technologies
GTI: Addressing Key Issues Across the Energy Value Chain

SUPPLY
- Expanding the supply of affordable energy

DELIVERY
- Ensuring a safe and reliable energy delivery infrastructure

END USE
- Developing technology for the efficient use of energy resources

Reducing carbon emissions to the environment

Supporting sustainable economic growth
Assumptions and Methodology

- Used www.cmiertools.com as the analysis vehicle
- Used eGRID data RFCE region
- Used Baltimore, MD weather data
Caveats

> CO2 output from power plants depends on the local mix of power generation sources for that region.

> Instantaneous performance (COP) at a fixed temperature is not the same as heating season performance
Direct Gas Use Benefits Calculator

- Developing a tool for use by utilities and state personnel
 - Build on current Source Energy and Emissions Analytical Tool (SEEAT) to understand benefits of displacing low-efficiency electric resistance equipment
 - Address opportunities related to Clean Power Plan, energy efficiency fuel switching, and other policy options for source energy efficient direct gas use

http://www.cmictools.com/cmicec/default.aspx
Direct Gas Use Benefits Calculator

- Users pick a state for analysis
- Pick whole house, switching from electric resistance to natural gas (space and water heating, cooking, drying) or each application separately
- Can run analysis for a single house or for all applicable homes in a state
Direct Gas Use Benefits Calculator:
Emission Reductions

In the context of electric to gas fuel switching (e.g., as part of Clean Power Plan), Pennsylvania could realize cost-effective CO$_2$ equivalent emission reductions of 35 million pounds (along with NO$_x$ and SO$_x$).

<table>
<thead>
<tr>
<th></th>
<th>SO$_2$ (lb)</th>
<th>NO$_x$ (lb)</th>
<th>CO$_2$ (1000 lb)</th>
<th>CH$_4$ (lb)</th>
<th>N$_2$O (lb)</th>
<th>CO$_2$e (1000 lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric House</td>
<td>131,730,000</td>
<td>76,414,760</td>
<td>60,892,280</td>
<td>103,145,800</td>
<td>898,252</td>
<td>63,738,600</td>
</tr>
<tr>
<td>Gas House</td>
<td>5,562,046</td>
<td>33,426,000</td>
<td>25,232,790</td>
<td>126,050,300</td>
<td>509,490</td>
<td>28,535,880</td>
</tr>
</tbody>
</table>

Note: All Emission calculations are based on GTI Source Energy and Emission Analysis Tool developed by Gas Technology Institute.
Full Fuel Cycle Energy Usage: Electric Resistance vs. High-Efficiency Gas

14,215 kWhr for Electric Resistance
Electric Resistance Heating vs. High-Efficiency Furnace

CO2 Output: Electric Resistance vs. High-Efficiency Gas Furnace

- **CO2 Output (1000 lbs)/yr**
 - Electric Resistance Heating: 14.1
 - High-Efficiency Gas Furnace: 6.62

- **CO2e Output (1000 lb/yr)**
 - Electric Resistance Heating: 14.9
 - High-Efficiency Gas Furnace: 7.5
EHPs vs. GHPs: Full Fuel Cycle Energy Use

5,359 kWhr for EHPs
EHPs vs. GHPs: CO2 Output

![Graph comparing CO2 output for EHPs and GHPs](image-url)
Electric Resistance Water Heater vs. Condensing Tankless Gas Water heater

![Bar chart comparing Electric Resistance Water Heater and Condensing Tankless Gas Water heater energy consumption. The chart shows the energy consumption in MMBtu for Electric, Natural Gas, Oil, Propane, and Total.]

- Electric: 42 MMBtu
- Natural Gas: 0 MMBtu
- Oil: 0 MMBtu
- Propane: 0 MMBtu
- Total: 42 MMBtu

Legend: Blue = Baseline, Green = Alternative
CO2 Output, Electric Resistance WH vs. Condensing Tankless WH

3,744 kWhr for EHPs
Energy Use: EHP WH vs GHP WH

1,482 kWhr for EHP WH
CO2 Output EHP WH vs. GHP WH

![Graph showing CO2 output comparison between EHP WH and GHP WH](image-url)
GHP and GHP Water Heaters
Conclusions

> Full fuel cycle analysis is the appropriate way to calculate energy efficiency and CO2 output

> Natural gas high-efficiency furnaces and water heaters and gas heat pump related technologies are amongst the most energy efficient technologies available or in the near future (GHP WH)

> Electric resistance technologies provide neither CO2 nor full fuel cycle advantages
Questions?

Contact info:

Ron Edelstein
202-661-8644
ron.edelstein@gastechnology.org
How to Heat a Home

Barbara Tyran
Executive Director, Government & External Relations

July 24, 2016
Heating Technology Options

- Electric & Natural Gas
- Space & Water Heating
- Multi- & Single-family metering
- EPRI: Future Outlook
Heat Pump

Level 1 System

Indoor Unit

Outdoor Unit
Current Heat Pump Space Conditioning

- Ambient discharge air feels “cold” (93 degrees F)

- Back-up resistant heat needed below 37 degrees F

- Coefficient of Performance (COP) = about 2.1 or 68% power system efficiency

- Fixed Speed On/off control
Heat Pump Technology Evolution

Next Generation: Advanced Variable Capacity

Fixed Speed Systems

Variable Capacity Systems

Next-gen HP System
New Heat Pump Space Conditioning

- Ambient discharge air temperature: 105 degrees F giving skin sense of warm air
- Expanded operating hours down to 5 degrees F before back-up heat required
- COP increased to 2.4 or 79% power system efficiency
- Internet connected variable capacity
- Increasingly cleaner electricity generation mix
Next Generation Heat Pump

EPRI Technology Innovation Breakthrough Project

Advanced Heat Pump Technology

- New options for customers
 - Heating in cold climates
 - Extreme efficiency
 - Flexible capacity
 - Comfortable supply air temperature

- New options for utilities
 - Enhanced demand response
 - Modulates power up & down
The Next Generation Heat Pump

History

- EPRI Technology Innovation Project -- 2013
 - Prototype development and testing of Level 1 systems: simple on/off capacity
 - RFP issued for construction of Level 2 system—outstanding: enables modulated load management

- Transition to field test ~ Fall 2016
Fall 2016…

- Major project launch
 - Field deployment and evaluation of Next-Gen Technology
 - Diverse geographic regions/utilities, manufacturers’ systems
Future…
Field Deployment

- Establishing Next-gen HP Systems with Manufacturers
- Detailed Use Case Specification
- Test Protocol Development
- Laboratory Evaluation at EPRI
- Field Deployment
- Data Collection
- Data Analysis
- Program Implementation
Conclusions

- Variable capacity heat pumps can offer potential electric heat solutions to Utility Winter Peaks

- Potentially eliminate backup electric heat when…
 - Sized appropriately
 - Unit settings are adjusted

- Promising future: improved efficiencies for extracting heat in one zone and transferring to another
Together...Shaping the Future of Electricity

Barbara Tyran
btyran@epri.com
Cell: 202-262-1323