What is a Fair Return?
 A look at the DCF and CAPM approaches to establishing a regulated return on equity

Travis Kavulla
First Vice President, NARUC
Commissioner, Montana PSC

CAMPUT-NARUC Bilateral Dialogue
May 10, 2015, Calgary, AB

Ratemaking Principles

- The "award" (i.e., the rate of return) must be:
- Commensurate with returns on enterprises with corresponding risks
- Sufficient to maintain the financial integrity of the regulated company
- Adequate to allow the company to attract capital on reasonable terms
- In the United States, a return that does not meet these requirements results in an unconstitutional taking of property. Hope (1944) and Bluefield (1923)

Rate of Return

- Regulated companies are financed through both debt (long-term bonds and short-term instruments) and equity (shareholder investment, either through publicly traded stock or through private placement)
- The capital structure is the debt-to-equity ratio of the firm.
- The "weighted" cost of capital is the \% Rate of Return that incorporates both the "Return on Debt" and the "Return on Equity"

Weighted Cost of Capital

SOURCE OF CAPITAL	\% OF CAPITALIZATION	RATE OF RETURN	WEIGHTED RATE
OF RETURN			

Calculating a Rate of Return

- Cost of debt is transparent: bonds disclose the coupon rate, which (unless imprudently incurred) is incorporated into the weighted cost of capital
- Cost of equity is much less clear: based on what a similar type of investment would command as a return to attract investors
- Regulators also have to decide whether to accept the company's actual capital structure, or assign a hypothetical capital structure

Return on Equity

- The method most frequently used in the United States is 'Discounted Cash Flow' to measure ROE
- DCF uses a 'proxy group' of similar companies' publicly reported dividends and stock price, as well as investors' consensus expectations of future growth, to derive a reasonable "cost of capital"
- $\mathrm{K}=\mathrm{D} / \mathrm{P}+\mathrm{g}$
$K=$ the cost of capital, or total return investors expect to receive
$P=$ the current market price of the stock
$D=$ the annual dividend
$g=$ the future annual growth rate that investors expect

Discounted Cash Flow

- Pros
- Uses known inputs + investors' reported expectations, so less guesswork involved (though plenty of disputes exist over appropriate inputs).
- 'We've always done it this way': DCF has a long tradition of being used in regulatory proceedings
- Cons
- A circular and self-referential measurement: You are setting a regulated company's return based on the earnings of regulated companies, which are driven by...regulators' decisions to authorize certain returns!
- Because it measures regulated firms' returns, it can become abstracted from what investors economy-wide actually expect.

So What Does DCF Look Like?

Disputes can involve:

- Whether to include a company in the proxy group
- Whether to adjust the final DCF result to account for other variables (like whether the utility is more risky than proxy group)
- Which version of DCF to use
- Whether to award a flotation cost adjustment

The FERC Has Spoken (Finally)

- In 2011, a group of state regulators from New England filed a complaint arguing that regional transmission owners were earning unreasonably high returns based on current market conditions. That filing cued a fight about the correct DCF methodology to use to derive an ROE.
- Three years later, FERC announced a new method for electric utility ROEs.
- Long-term growth rates (pegged to economy-wide GDP projections) incorporated into g, in addition to growth in dividends
- $75^{\text {th }}$ percentile, rather than mid-point, used for ROE award.
- Resulting ROE (for New England) was 10.57\% (Op. 531-A, Oct. 2014).
- Most state commission awards are lower than this result.

Capital Asset Pricing Model

- Alternative to DCF

- CAPM is a 'risk-premium' analysis
- Here, the reasonable return is equal to

$$
\begin{array}{ll}
R_{i}=R_{f}+\beta_{i}\left(R_{m}-R_{f}\right) & \begin{array}{l}
\text { ree rate (usually a U.S. Treasury Bond) } \\
\text { market-risk rate, multiplied by: }
\end{array} \\
R_{i}=\text { Return on Asset } i & \text { ق," a measure of a stock's 1) volatility and 2) correlation, } \\
R_{f}=\text { Return on Risk Free Asset } & \text { d to the performance market as a whole. A Beta coefficient } \\
\beta=\text { Covariance of Asset and the Market } & =\text { less volatile than the risk of market on average (i.e., when } \\
\text { Divided by Variance of the Market } & \text { et is up big, it's up a little, and vice versa). }
\end{array}
$$

Capital Asset Pricing Model

- Pros
- Theoretically, a better tool than DCF because it is not self-referential but oriented toward the performance of the whole market, where investors can take their money not just to utilities but any equity.
- Used in many other places in the world and in a handful of U.S. jurisdictions
- Cons
- Seemed to work very well in certain economic times, but with market distortions of present day (i.e., Fed easy-money policy) its performance is questionable

