Staff Subcommittee on Electricity and Electric Reliability

NARUC Summer Policy Summit

Staff Subcommittee on Electricity & Electric Reliability and Staff **Subcommittee on Energy Resources and the Environment Do Your Utilities Need Grid Modernization to Integrate Distributed Generation**?

NARUC Summer Policy Summit

Grid Modernization to Integrate Distributed Generation?

Moderator: Kim Jones, North Carolina

Speakers:

Anda Ray and Barbara Tyran, EPRI

Joe Paladino, DOE

Paul DeMartini, Newport Consulting Group

Our Energy Future: Integrated Energy Network

Anda Ray, Barbara Tyran

SVP, External Relations and Technical Resources Executive Director, Government & External Relations

> NARUC Summer Policy Summit San Diego, CA July 16, 2017

Our Members...

- 450+ participants in more than 30 countries
- EPRI members generate approximately 90% of the electricity in the United States
- International funding of nearly 30% of EPRI's electric utility research, development, and demonstration funding
 Our Advisors...

- Public Utilities Commissioners
 - Wall Street and Academia
 - Consumer Advocate
 - Academia
 - Business and Government Leaders

The Integrated Energy Network Builds upon Decades of EPRI Thought Leadership

© 2017 Electric Power Research Institute, Inc. All rights reserved.

The Integrated Grid Platform

Reliability, Connectivity and Flexibility – realizing the full value of the Integrated Grid.

EPRI 2015 Report

ELECTRIC POWER RESEARCH INSTITUTE

Distributed Energy Resources and Microgrids/Nanogrids

DSOs – an emerging role evolving towards *information hubs* to facilitate retail markets that allow customers to choose their supplier and allow suppliers to offer options and services best tailored to customer needs

Growth of Smart Cities

A Smart City...

...Uses communication networks, wireless sensor, technology and intelligent data management to make decisions in real time about infrastructure needs and services delivery.

Today Smart Cities Becoming a Reality

Malmö, Sweden

Songdo, South Korea

LIVEABILITY WORKABILITY SUSTAINABILITY

The Role of the Digital Utility in Smart Cities

THE ROLE OF DIGITAL UTILITIES IN SMART CITIES:

Leveraging Utility Information, Communication, and Technology

June 2017

June 2017

The Digital Utility

Enabling Protection of Privacy and Data

Enabling Responsiveness and Commercial Operation

Enabling Efficient Asset Performance

Integrating Advances in Information Communications Technologies

Enabling Customer and Delivery Services

Potential Effects of the Sharing Economy

Digital Technology Growth Out Paces Other Technologies

Smart Meters already connected

20,000,000,000 By 2025

Terabytes per day

Modern Power Plants produce

Less than 2% analyzed today

The Integrated Energy Network:

Connecting Customers to Reliable, Safe, Affordable and Cleaner Energy

The "Internet of Things" Connectivity

26 billion devices will be connected to the internet of things by 2020 – including home automation, integrated grid, smart cities, transportation, space conditioning and lighting.

The Integrated Energy Network:

Connecting Customers to Reliable, Safe, Affordable and Cleaner Energy

Improves Reliability
Promotes Cleaner Energy and Efficient Electrification
Provides Economic Efficiencies
Expands Customer Choice and Enhances Value

Big Shifts to the Digital Utility: "Eyes Wide Open"

THE INTEGRATED ENERGY NETWORK

- The Integrated Energy Network requires <u>rethinking "energy"</u>
- Electric, gas, transport, and water systems are increasingly interdependent
- Advances in wireless connected technologies will be instrumental in integrating energy systems.
- <u>Efficient electrification play essential roles in the future energy</u> system
- Integrated (electric) <u>Grid essential to enable to the Integrated Energy</u> <u>Network</u> by enabling customers to use, produce and store electricity the way they desire.
- Innovation is needed in technology, policy, regulation, business models and market designs to effect an efficient transformation
- Global collaboration in innovation necessary

Together...Shaping the Future of Electricity

Considerations for a Modern Distribution Grid

A Collaboration with State Commissions & Industry to Frame Grid Modernization

NARUC Summer Meetings

July 16, 2017

Overview

Origin:

Initiated by CA and NY, plus DC, HI & MN commissions to examine what is needed to develop a next generation distribution system platform (DSPx)

Objective:

Provide guidance to facilitate grid modernization conversations around 2 important questions:

- 1) What considerations are of particular importance within a grid modernization decision process?
- 2) What considerations should be given to timing and pace for states beginning to consider grid modernization?

Grid Modernization Strategies

3 strategic concepts are generally considered:

- Adopt technology innovations to increase customer value, system reliability, resilience & security
- Enable customer choice & DER integration
- Enable opportunities for DER to provide grid services which in turn will create customer value through system efficiencies

Note: It is important to not confuse business model questions with those related to the cyber-physical distribution system and the modernization that is required irrespective of who may develop and aggregate DERs, or who may operate the grid.

Distribution Grid Evolution

US distribution systems currently have Stage 1 functionality - a key issue is whether and how fast to transition into Stage 2 functionality

DSPx explored rational approaches for moving from Stage 1 to 2 over the next 5 years. These include maintaining traditional grid functions (reliability, security, efficiency), plus enabling DER integration at scale and operational value realization.

Modern Distribution Grid Report

A rigorous architectural approach to support development of grid modernization strategies and implementation plans based on best practices

Volume I: Maps Grid Modernization Functionality to Objectives

- Grid architectural approach that maps grid modernization functionality to state objectives within a planning, grid operations & market operations framework
- > Enables evaluation of functionality required to meet a specific objective

Volume II: Assessment of Grid Technology Maturity

- Assessment of the readiness of advanced grid technology for implementation to enable functionality and objectives identified in Volume I.
- Enables evaluation of technology readiness for implementation

Volume III: Implementation Decision Guide

- Decision criteria and considerations related to developing a grid modernization strategy and implementation roadmap with examples to illustrate application
- Enables development & evaluation of grid modernization strategies and roadmaps for implementation

State Objectives are Fairly Consistent

Leading to grid properties enabling DER utilization – though timing, scale and scope are different

Objectives	CA	DC	FL	ні	١L	MA	MN	NC	NY	OR	ТΧ
Affordability	•	٠	٠	٠	٠	•	•	•	٠	•	٠
Reliability	٠	٠	•	•	•	•	٠	٠	•	•	٠
Customer Enablement	٠	٠	•	٠	٠	•	٠	٠	•	•	٠
System Efficiency	•	٠	•	•	٠	•	٠	٠	•	•	٠
Enable DER Integration	•	•	٠	٠	٠	•	٠		٠	•	٠
Adopt Clean Technologies	٠	٠	٠	٠	•	•		٠	٠	•	٠
Reduce Carbon Emissions	٠	•	٠	•				٠	٠	•	٠
Operational Market Animation	•	•		•			•		•		

Modern Grid Evolution

Needs & objectives drive grid capabilities and corresponding enabling business functionality and technology

Integrated Planning Considerations

Integrated planning and analysis needed within and across the transmission, distribution and customer/3rd party domains

Architecture Manages Complexity

The engineering issues associated with the scale and scope of dynamic resources envisioned in policy objectives for grid modernization requires a holistic architectural approach

So, pick-up a pencil

Before trying to hang windows

Architectural Considerations

- Separate core infrastructure layers from modular applications:
- Communications in particular should be treated as a foundational infrastructure layer;
- Grid sensing and automation should be included

Core Cyber-Physical Operational Platform

Platform Considerations

Core components are foundational; applications layer on this foundation as additional functionality is needed

omer rtal	Customer Choice Decision Support Analytics												
Custo	Customer Energy Information & Analytics Out				lage Ini	formation	Custon	iais	St				
Data tal	Locational Value Analysis	Dynamic Analysis	Optimiz Analy	otimization Analytics		Optimization Analytics		n Market Oversight			DER Portfolio Optimization	ket Por	icatio
Grid I Por	Hosting Capacity	Probabilistic Planning	Smart Meters		Adva	anced Meters	Volt-var Managemer	DER nt Management		Mar Appl			
rider fo	Power Quality Analysis	Fault Analysis	DMS		OMS		GIS		Network Model		s		
ER Prov Data/In	DER & Load Forecasting	Power Flow Analysis	s	SCADA		Automated F	ield Devices Ad		vanced Protection		nend		
ä			Operational Data Management								duuo		
Sensing & Measurement										e C			
Operational Communications (WAN/FAN/NAN)										Col			
Physical Grid Infrastructure													

From DSPx, Volume 3 – Decision Guide, under review

Timing & Pace Considerations

Pace & scope of investments are driven by customer needs & policy objectives. Proportional deployment to align with customer value

Cost Effectiveness Considerations

Grid modernization investments fall into several categories that may be evaluated under different methods for equitable attribution

No.	Expenditure Purpose	Methodology
1	Grid expenditures to replace aging infrastructure, new customer service connections, relocation of infrastructures for roadwork or the like, and storm damage repairs.	Least cost, best-fit or other traditional method recognizing the opportunity to avoid replacing like-for-like and instead incorporate new technology
2	Grid expenditures that will be paid for directly by customers	These are "opt-in" or self-supporting
	participating in DER programs via a self-supporting margin	costs, or costs that only benefit a
	neutral opt-in DER tariff, or as part of project specific	customer's project and do not require
	incremental interconnection costs, for example.	regulatory benefit-cost justification.
3	Grid expenditures required to maintain reliable operations	Least cost, best-fit for core platform, or
	in a grid with much higher levels of distributed resources	Traditional Utility Cost-Customer Benefit
	connected behind and in front of the customer meter that	for "applications"
	may be socialized across all customers.	
4	Grid expenditures not paid for by customers adopting DERs	Integrated Power System & Societal
	or merchant DER developers (e.g., community solar or DERs	Benefit-Cost (e.g., EPRI and NY REV BCA)
	for bulk power services) and not required for safety or	
	reliability but are proposed to enable public policy and/or	
	incremental system and societal benefits for all customers.	

From Modern Distribution Grid Volume III – Decision Guide, under review

Summary

- 1. Identify Customer Needs & Societal Objectives
- 2. Identify Capabilities & Functionality Needed
- 3. Develop a Grid Architecture
- 4. Develop Related Designs
- 5. Select Appropriate Grid Technologies
- 6. Develop a Roadmap aligned to Pace & Scope of Needs
- 7. Implement Proportionally to Customer Value

Thank You

Contacts:

Joe Paladino, joseph.paladino@hq.doe.gov

Paul De Martini paul@newportcg.com

Jeffrey Taft jeffrey.taft@pnnl.gov

References:

www.doe-dspx.org

http//gridarchitecture.pnnl.gov https://e

https://emp.lbl.gov/projects/feur

Staff Subcommittee on Electricity and Electric Reliability

NARUC Summer Policy Summit