Committee on Water

NARUC Summer Policy Summit

Committee on Water

Advancing Water Technology

NARUC Summer Policy Summit

WaterStart is a cluster of global leaders in the implementation of water innovation

Nevada Governor's Office of

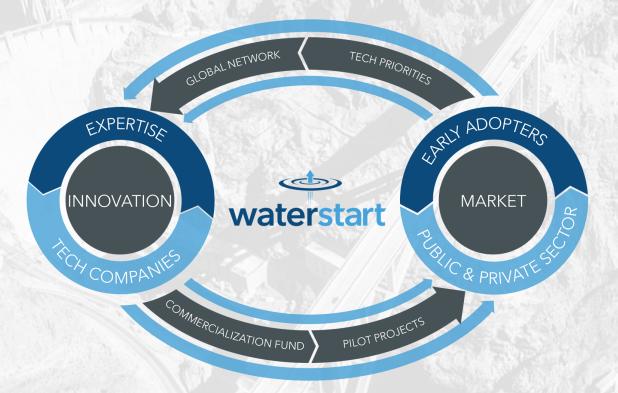
ECONOMIC DEVELOPMENT

Empowering Success

\$14B 65% 50K

Water-related impact of top global companies*

Percentage of start-ups that fail within first ten years


Water utilities in the United States

SOURCE: THE CARBON DISCLOSURE PROJECT'S SURVEY

WATERSTART.COM

- Acts as a portal
- Delivers high-value, shared services
- Assists with commercializing and distributing expertise
- De-risks & incentivizes water innovation

Demand Driven Innovation

Drinking Water

- Technologies for maintaining distribution water quality parameters in real time
- Utility location technology
- Software for aiding in the development of accurate electrical as-built drawings
- Removal of nitrates from well water

Waste Water

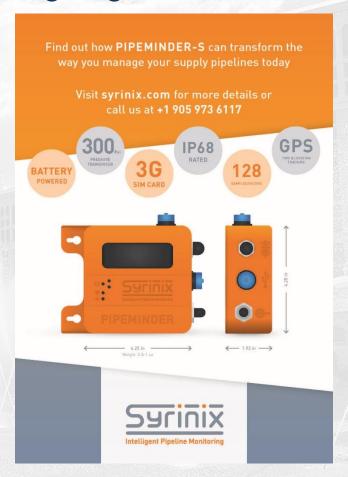
- Low cost sludge handling
- Grease and odor control
- Flow and obstruction monitoring

Seeking real deployable technologies!!

- Evaluated 180 proposals from tech companies
- Funded \$1,200,000 in Pilot Projects
- Recruited 11 new companies to the State
- 96 new jobs projected over the next 2-3 years

Tech Portfolio Highlights

- Canada
- Smart technology platform utilizing acoustic sensors to monitor for water leaks in realtime
- Piloted technology along 3-mile corridor of the Las Vegas Blvd
- Deferred a \$30million pipe replacement project down LV Blvd.



Tech Portfolio Highlights

- United Kingdom
- Pressure transient monitoring in water mains for leak prevention
- Testing and demo at 10 locations
- Resulted in a 50% reduction in the magnitude of transients

Tech Portfolio Highlights

- Australia
- Provides mobile and purpose-built engineering data and work mgmt.
 platforms in the cloud
- Providing SNWA/LVVWD a secure cloud-based engineering drawing mgmt. soln and a workforce soln for and scheduling jobs and measuring progress

RedEyeDMS

Engineering Drawing and Data Management Solution for Asset Owners & their Service Providers

RedEyeWFM

Collaborative Work Management Platform for Asset Owners & Service Providers

Channels for Innovation Summit

FRIDAY
OCTOBER 6, 2017

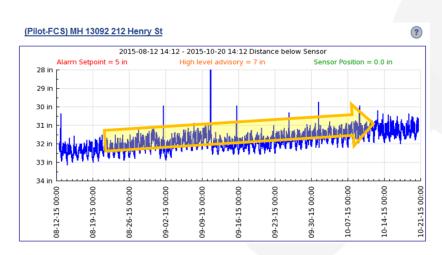
/HERE

South Point Hotel and Casino Las Vegas, Nevada

www.channelsforinnovation.com

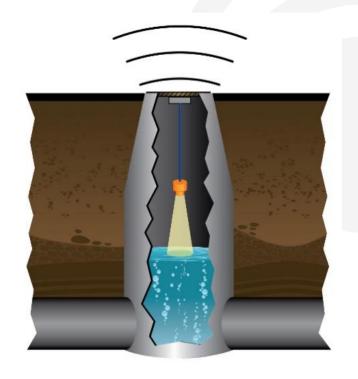
Thank You

Rebecca Shanahan rebecca.shanahan@waterstart.com



Collection System Asset Management

How Smart Technology Closes the Gap for Meeting Regulatory Requirements and Lowering Capital Impact



About SmartCover® Systems®

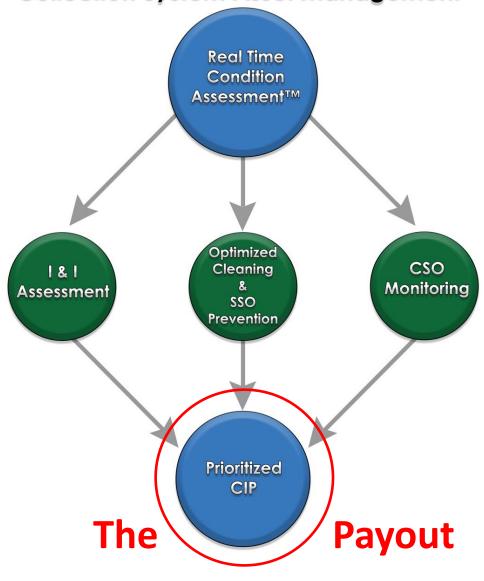
- San Diego Technology Company
- Twelve years pioneering
 Smart Technology for Wastewater
- Remote Monitoring, Data & Analysis
 - SmartLevelTM level monitoring
 - SmartFLOE™ flow monitoring
 - SmartRain[™] rain data
 - SmartTide[™] tidal data
 - SmartTrend® trend analysis
- 15 US and International Patents
- Performance Proven with
 - >3,000 installations
 - >150 million operating hours...

National Company

A sampling of Customers

Western
San Diego, CA
San Jose, CA
Long Beach, CA
Fresno, CA
Cupertino, CA
Sacramento, CA
Phoenix, AZ
Carson City, NV
Las Vegas, NV
Everett, WA

Central
San Antonio, TX
Ft. Worth, TX
Harlingen, TX
Baton Rouge, LA
New Orleans, LA
Memphis, TN
Lebanon, TN
Springfield, IL


Eastern
Boston, MA
Newburgh, NY
Howard County, MD
Henrico County, VA
Charlotte, NC
Columbia, SC
Charleston, SC
Henry County, GA
Miami, FL
Sarasota, FL
Severn Trent
Halton Region, ONT

SmartCover® Systems™ PROPRIETARY

Smart Technology & Asset Mgt.

Lower Costs and Better Results

Smart Technology

Internet of Things uses Smart Technology to Drive Informed Decisions

Smart Technology

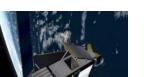
Internet of Things uses Smart Technology to Drive Informed Decisions

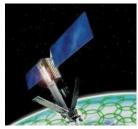
Water Internet of Things

- Sanitary Sewer Systems
- Lift Stations
- Combined Sewer Systems

Storm & Surface Water

- Reservoirs
- Canals
- Storm Water Systems
- Tidal Structures



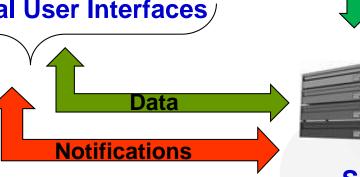

- Water Tanks
- Pines

System Architecture

SmartCover® Monitoring Systems


Secure

network


servers

Redundant Iridium Satellite Network

Secure SCS
Servers

SmartCover® Systems'® PROPRIETARY

Making Two Ends Meet?

Infrastructure vs. Clean Water

SmartCover® Systems™ PROPRIETARY

Aging Infrastructure

US EPA

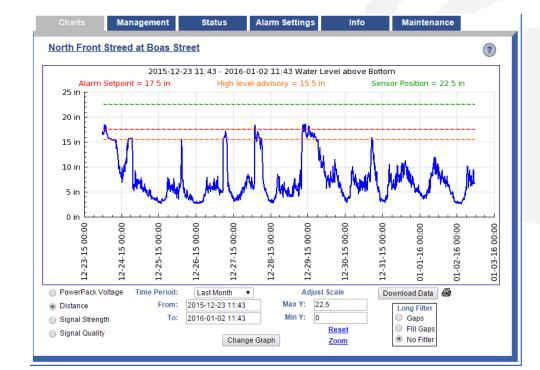
"Vast majority of nation's pipeline was installed after WW-II and has or is reaching the end of its useful life".

ASCE

- "... infrastructure gets a D+"
- "...funding *gap* of as much as \$300 billion over the next 20 years..."

Clean Water Act

Goal of the Clean Water Act of 1972
Stop pollution of US


Stop pollution of US surface waters

Implicati21on
Sanitary and Combined
Sewer Overflows must
be eliminated

SmartCover® Systems™ PROPRIETARY

Wastewater Pollution Impact

Human Health Threat

Environmental Effects

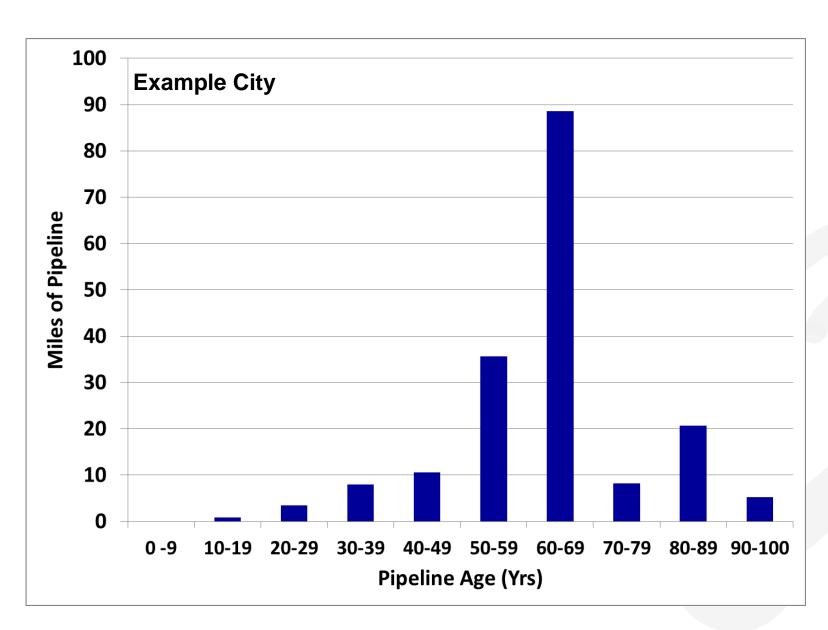
- Bad Press
- Political turmoil
- Unplanned Cost

Wastewater Pollution Impact

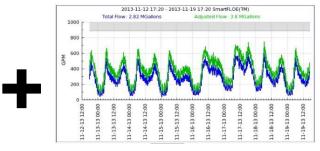
Human Health Threat

Environmental Effects

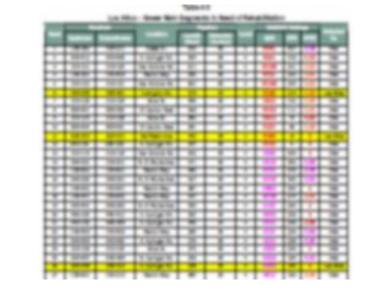
- Bad Press
- Political turmoil
- Unplanned Cost


The BIG Money Problem...

The Coming Tsunami



Condition Assessment



Data Collection & Inspection

Analysis (PACP, e.g.)

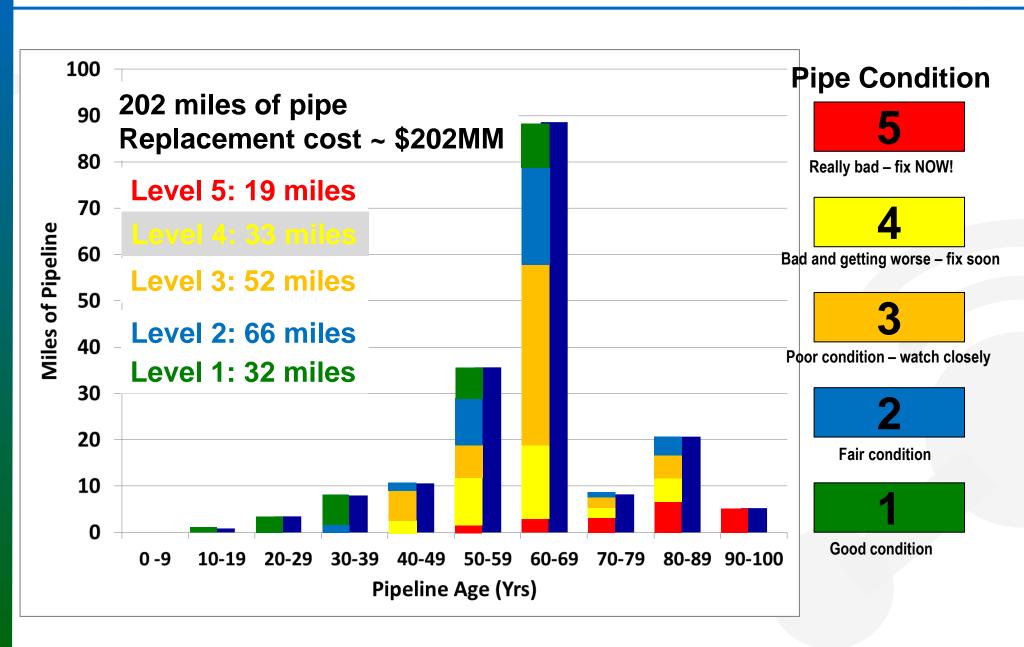
Risk-Based Priorities for Rehab

Condition Ranking System

	Table 8. Condition state and rehabilitation priorities				
	Condi- tion state	Implication	Impact rating	Rehabilitation priority	
	5	Failed or imminent failure	1 to 5	Immediate	
	4	In bad condition, high structural risk	5	Immediate	
_			1 to 4	High	
	3	In poor condition, 4 to 5 moderate structural risk 1 to 3	4 to 5	Medium	
			1 to 3	Low	
	2	In fair condition, 5	Medium		
		minimal structural risk	tructural 1 to 4 Lo	Low	
	1 or 0	In good or excellent condition	1 to 5	Not required	

Upgrade Approaches

	Option	\$\$/ft*	\$\$/mile	\$\$/mile
LOW	Replacement	~\$50	\$264,000	\$264,000
HIGH	Replacement	~\$1,000	\$5,280,000 Longer lifetime	\$5,280,000
LOW	Re-Lining	~\$30	\$158,400	\$158,400
HIGH	Re-Lining	~\$250	\$1,320,000 Shorter lifetime Lower capacity	\$1,320,000


For simplicity: \$1MM/mile

*Sources: various

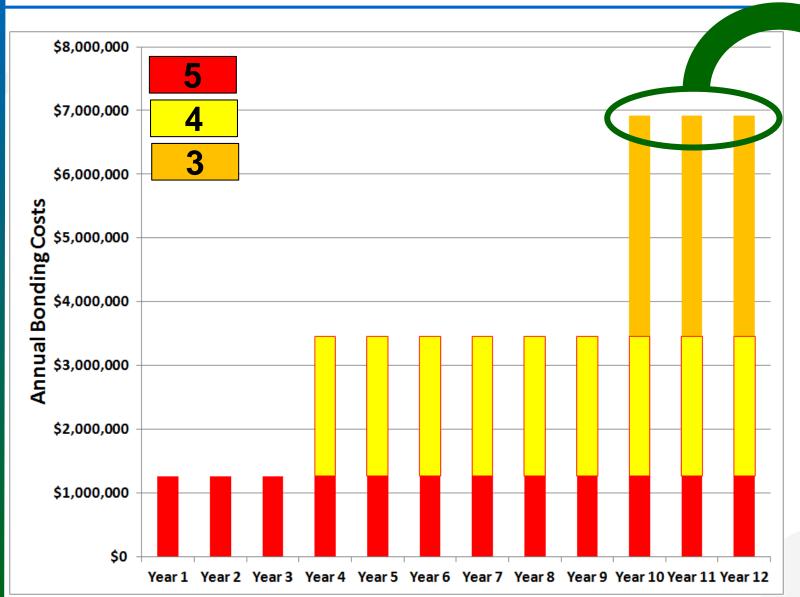
SmartCover® Systems™ PROPRIETARY

Results of Condition Assessment

The Classic Solution

- Prioritize pipelines
- Set schedule for repair
- Design, permitting, EIR
- Generate budget for repair
- Get budget approval for repairs

- Hire the contractors
- Spend the money
 - RAISE THE RATES !?!


Infrastructure Risk

Financial Scenario

= \$20/month

= DOUBLE current bill

Even Worse???

PROBLEM #1: Financing may not be approved or is reduced

Smaller project or NO project

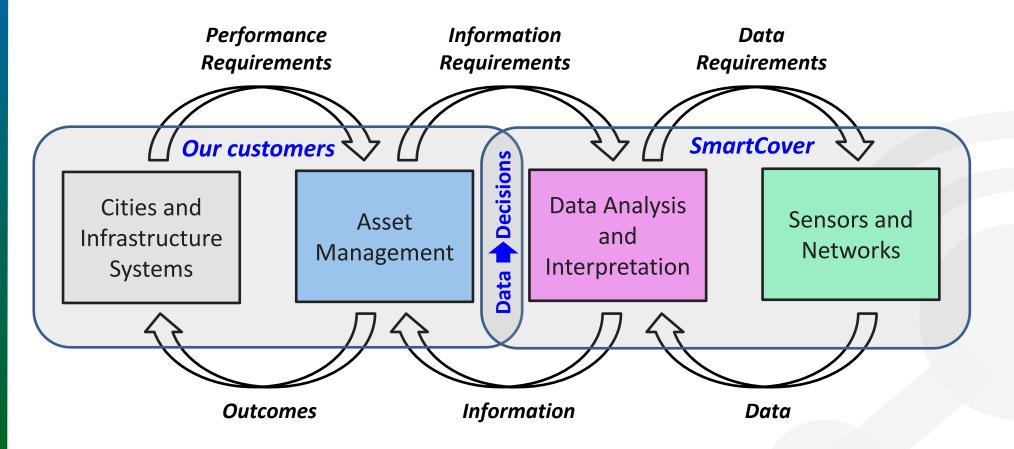
Spills, maintenance GO UP, ... not down

PROBLEM #2: Condition assessment is snapshot

Don't know rate of change of conditions

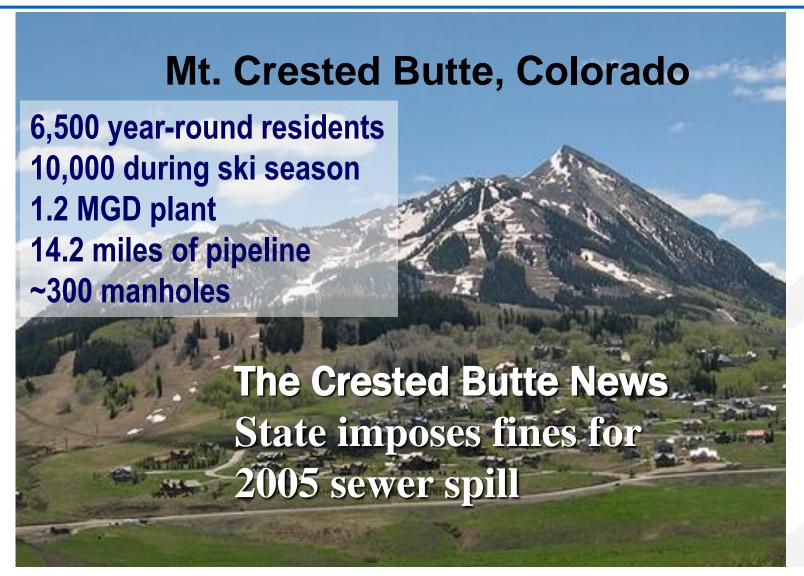
Conditions DO NOT get better with time

REMEMBER...



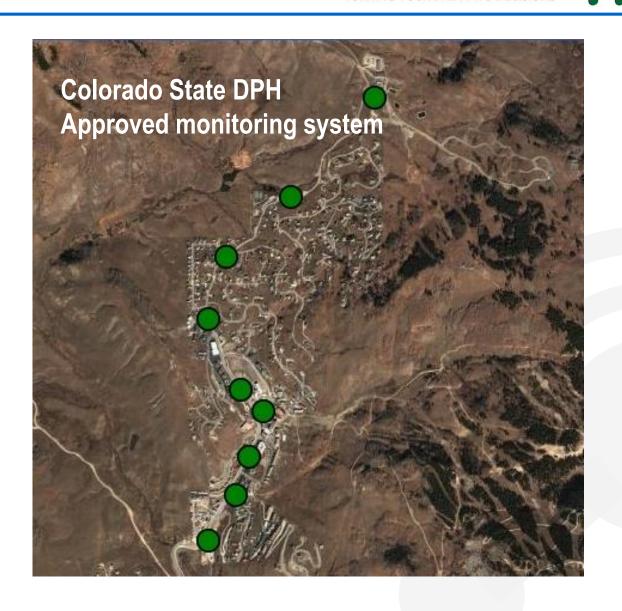
- 1 ASCE (wastewater, 2013):
- "...funding gap of as much as \$300 billion over the next 20 years..."
- 2 Capital costs ~ \$1 million/mile
 - **EPA**: (3)
 - 1.2 MM miles sewer pipe @ \$1MM/mile
 - = \$1.2 TRILLION in replacement costs

The Solution



Smart Infrastructure¹

Case Study 1 Monitor vs Replace



Consent order 2006: replace pipe: \$10 million

Smart Infrastructure Solution Sylvan Data Into Decisions TO DECISIONS

Solution:
Install & Operate
Remote Level
Monitoring System

Cost Savings:
Replace- \$10MM
Monitors- \$100K
Savings: \$9.9MM
and no spills

Case Study 2: Monitor &

Target Capital

Elsinore Valley Municipal Water District

Lake Elsinore, CA

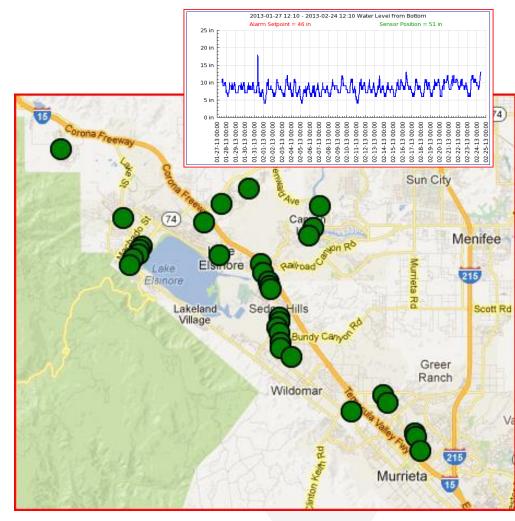
35,000 connections 283 miles of sewer line Force main: 12 miles

Lift Stations: 31

Don't Build: Monitor

Consulting engineering capacity study recommends up-sizing pipeline: INSUFFICIENT CAPACITY

Upgrade Cost: \$29MM


32 level monitors installed @ \$120K

- Collection system data acquired
- Protect against overflows

Outcome:

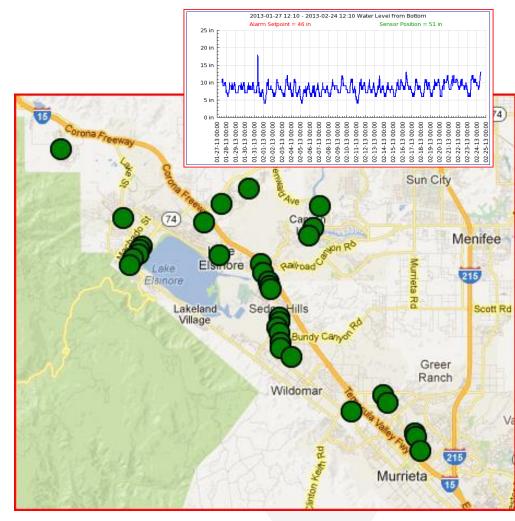
- Monitors show peaking factors in model too high
- Project down-sized to \$9 million

Savings: \$20MM and no spills

Don't Build: Monitor

Consulting engineering capacity study recommends up-sizing pipeline: INSUFFICIENT CAPACITY

Upgrade Cost: \$29MM


32 level monitors installed @ \$120K

- Collection system data acquired
- Protect against overflows

Outcome:

- Monitors show peaking factors in model too high
- Project down-sized to \$9 million

Savings: \$20MM and no spills

Monitor vs. Replace

= SAVING BIG BUCKS

Agency	Capital	Monitoring	Annual	Project	Capital	ROI
	Project	Capital	Monitoring	Capital	Saved	
	Estimate		Cost	Spent		
FPUD	\$240K	\$4K	\$1K	\$0	\$236K	59:1
MCBWD	\$10M	\$100K	\$6K	\$0	\$9.9M	99:1
EVWD	\$29MM	\$120K	\$3.2K	\$9.1M	\$19.90	166:1
_		_	_	_	_	

•

•

Real time remote monitoring:

- Conserves capital- delay or defer
- Produces real-time condition assessment
- Eliminates risk of overflows

Longer Term...

Cost/mile, \$K, two project alternatives

	ALTERNATIVE A	ALTERNATIVE B	SAVINGS	% SAVINGS
	(Build Pipeline)	(Monitor)	A - B	
Year 1	\$67	\$22	\$45	66.9%
Year 2	\$133	\$29	\$104	78.2%
Year 3	\$200	\$36	\$164	82.0%
Year 4	\$266	\$43	\$223	83.8%
Year 5	\$333	\$50	\$283	85.0%

AT LEAST 67% savings NO ADDITIONAL RISK

Transforming 'Best' Practices

Not-So Smart

SMARTCOVER® SYSTEMS TURNING YOUR DATA INTO DECISIONS™

Maintenance

- Best Practices dictate rigorous cleaning of pipes
- Schedules are based on history
 - The past cannot predict the future
- The result is exaggerated action
 - Segments are cleaned unnecessarily
 - Condition assessment is subjective- visual inspection at the site
 - There is no "protection" between cleanings

Case Study 3: Smart

SMARTCOVER® SYSTEMS TURNING YOUR DATA INTO DECISIONS TO

Cleaning

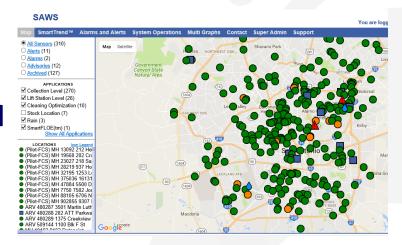
San Antonio Water System (SAWS)
 Cleaning Routine based on historical information:

Monthly: 204 sites

Quarterly: 620 sites

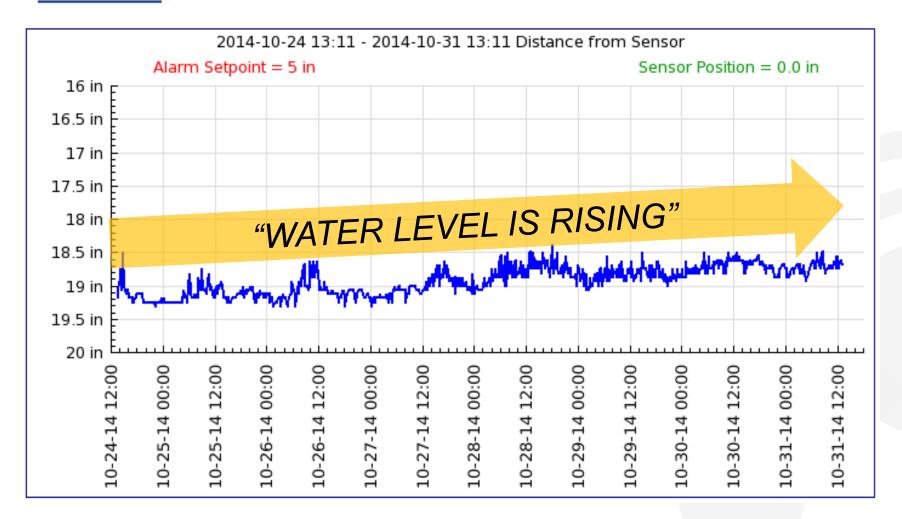
- Calculated cost of cleaning per site
 - \$500 per site per instance
 - 2,448 'monthlies' per year
 - \$1,224,000 annual cost

Is there a better way?

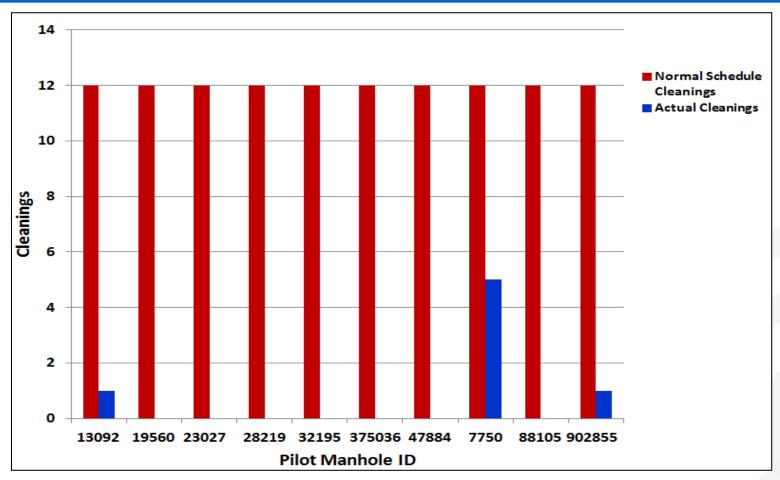


A Smart Solution

- Smart Technology Pilot Demonstration
 - Focus question: can technology reduce frequency & expense with no increased risk?
- SAWS' Pilot Set-up (Aug. '15 through Jul. '16)
 - 10 monthly cleaning sites selected
 - Sites cleaned prior to start
 - SmartCovers® installed & added to system network map
 - SmartTrend™ trend analysis performed daily
 - Crews directed to clean based on level change
 - Cleaning work order issued only when data as indicates



Detection of Small Changes


SmartTrend™: Automated data trend analysis of level change

PS 639 MH 11

Significant Cleaning Reduction

High frequency cleaning: 10 sites x 12 months = 120 instances

SmartClean™ Pilot: 7 instances

Reduction: 94.1% cleaning saved (120-7)/120

SAWS Pilot Results

Pilot Summary

Pilot System Tested	High Freq. Cycle (10 Sites)	Pilot Duration	High Freq. Expectation	SmartClean™ Results	% Reductio n
San Antonio	Monthly	12 months	120	7	94.1%

The Bottom Line

High Frequency Cleaning annual costs: \$1,224,000

• Savings at 85%* reduction: \$1,040,400

Implementation Costs: \$ 699,200 (start-up)

Annual Costs Year 2 through 5 \$ 590,000

Total Savings (5 Years) \$ 2,142,800

^{*} Calculation based on a lower, conservative reduction

SmartClean™ Process

Technology Benefits Summary

- Productivity gain- personnel/equipment re-directed to more critical tasks
- Continuous SSO protection- full monitoring in between cleanings
- Lower risk- less time crews in traffic

Lower carbon footprint

 Extended Asset Life - lower frequency cleaning reduces pipe and structure wear

Transformational Change

- Smart technology brings *transformational*, not incremental, change...
- Users of smart technology gain visibility into the collection system
 - Capital demands are reduced or even eliminated
 - Operational practices are significantly improved with corresponding cost reduction
 - Management has real-time information to make decisions, this lowers risk.

The *essential* choice: Use history and models to drive decisions?

Or, do we use *Smart Technology* to let us see the road ahead

Thank You!

SmartCover[®] Systems[™]

Jay Boyd
Senior Vice President
760-291-1980

www.smartcoversystems.com

Committee on Water

NARUC Summer Policy Summit