Staff Subcommittee on Energy Resources and the Environment

NARUC Summer Policy Summit

Staff Subcommittees on Energy Resources

Preparing for a Future with Abundant DER

NARUC Summer Policy Summit

Preparing for a Future Grid with Abundant Distributed Energy Resources

Subcommittee on Energy Resources and the Environment NARUC Summer Policy Summit, San Diego July 16, 2017

Scott Murtishaw, Interim Supervisor Customer Generation Section CPUC Energy Division

Cornerstones of the Distribution Resources Plan

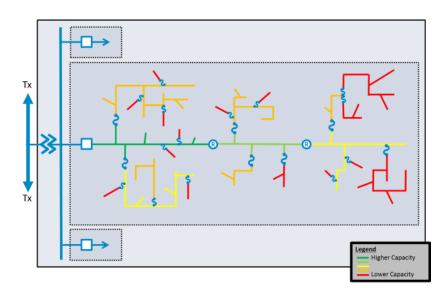
- *1. Identify* Available DER Hosting Capacity across the Distribution Grid
 - Replace rules-of-thumb with more sophisticated analytics
- *2. Facilitate* Interconnection for DERs with Capacity below Available Hosting Capacity
- *3. Identify* Where DERs can Provide the Most Locational Value
- *4. Direct* DERs to High-Value Locations
 - Use various procurement and incentive mechanisms

Integration Capacity Analysis Methodology Development and Working Group Coordination

2017 NARUC Summer Policy Summit

Mark Esguerra, PE Pacific Gas and Electric Company Grid Integration and Innovation

July 16, 2017



Distribution Resources Plan (DRP) Guidance on ICA

- Specify available hosting capacity on distribution grid
- Results down to line section or node level
- Ability to improve efficiency of interconnection process

Key Characteristics Required for ICA

- Establish common methodology among utilities
- Avoid "rule of thumb" approaches
- Incorporate new technologies and DER capabilities (i.e. Smart Inverters)
- Publish results via online maps for customers
- Can be performed on regular intervals system wide

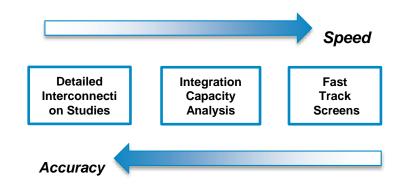
California DRP Working Groups

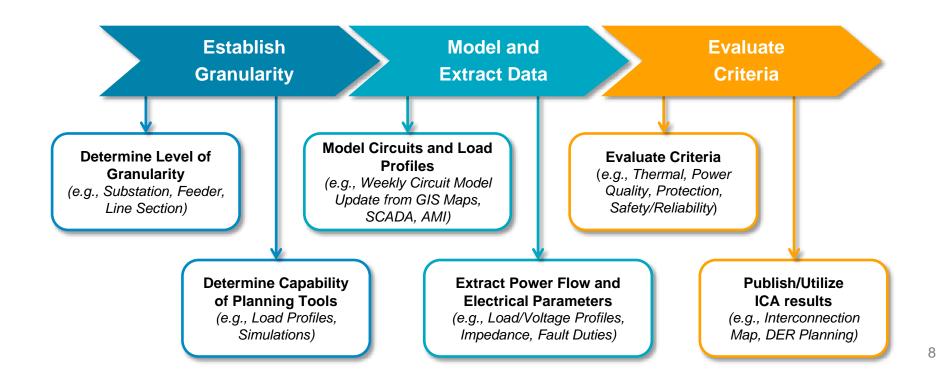
Collaborative Innovation

- Industry working group has been established to get feedback and input to help improve the methodologies
- The working group is public and free to participate
- Information can be found at the two websites below

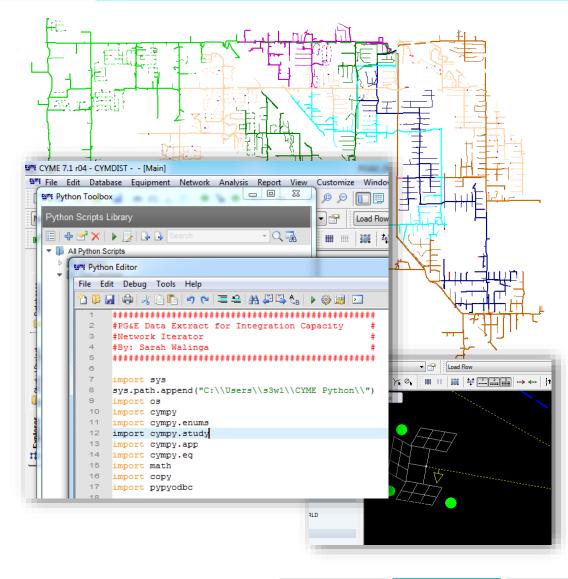
ICA Working Group Timeline								
2016			2017					
Q1	Q2	Q3	Q 4	Q1	Q2	Q3	Q4	
🔷 ACR	on ICA De	mo		Ruli	ing on Sho	ort Term 🔇	•	
	Der	no A						
	🔶 Re	vised Der	no A Plan)emo A Re	port		
Sh	ort Term (Monthly I	Meetings)					
		•	ICA Crite	rion Rep	ort			
				Status	Report or	n Long Te	rm ICA	
	Short Term ICAWG Report							
	Long Term Mtgs.							
					_ong Term	ICAWG F	Report 🔶	

http://www.cpuc.ca.gov /General.aspx?id=5071


http://drpwg.org/

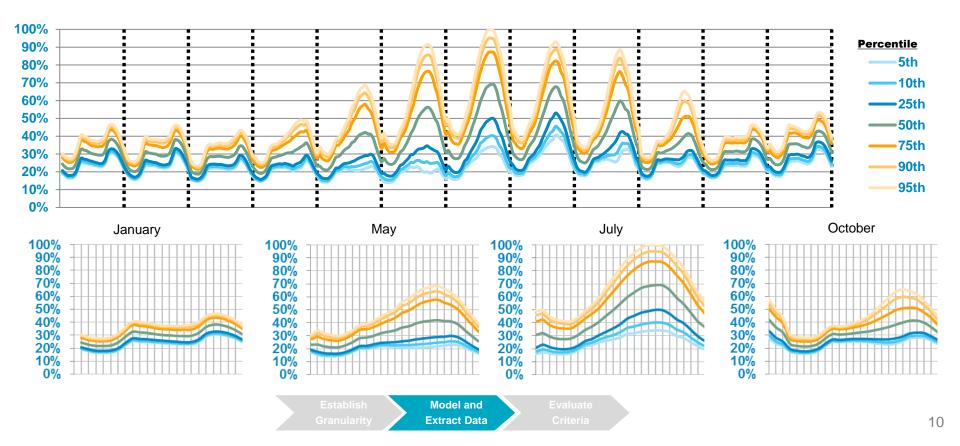


Integration Capacity Framework and Principles


Development of new methodology was required in order to calculate DER Integration Capacity

Distribution Grid Modeling and Software Tools

Modeling geospatial distribution circuits is extremely helpful


- Customer loading and forecast data downloaded from SmartMeters
- Granular modeling is critical

Software Tools

- Batch automated power flow is necessary for an efficient ICA
- Scripts needed to properly analyze and extract large amounts of data relevant for ICA

- SCADA can be useful, but it's not everywhere
- Smart Meters are useful, but it doesn't tell the whole story
- Raw historical data is useful, but isn't the future
- PG&E utilizes software to provide enhanced load shapes based on metered data and locational variation between customer types and statistical occurrence

Evaluation of Important Power System Criteria

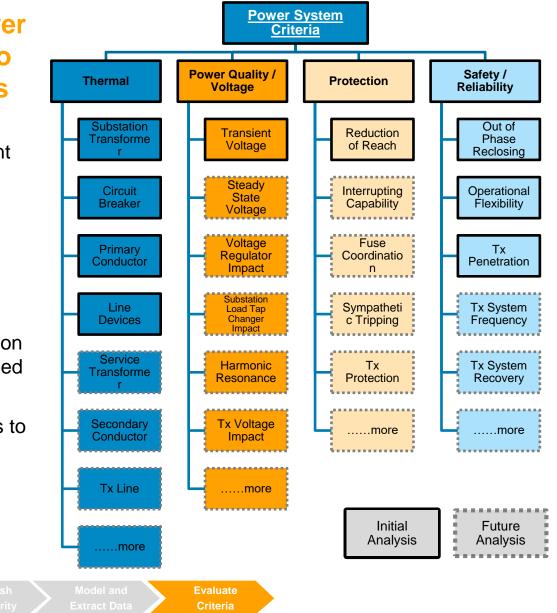
Various aspects of the power system must be analyzed to determine possible impacts

Thermal

PGSF

Determines limits based on equipment thermal ratings

Power Quality / Voltage


 Determines limits that do not create power quality to operate outside prescribed thresholds

Protection

 Determines limits that ensure protection equipment can still operate as designed

Safety / Reliability

 Determines limits that reduce impacts to safe and reliable operation of the grid during abnormal conditions

Integration Capacity Analysis Results

Solar Photovoltaic (PV) and Renewable Auction Mechanism (RAM) Program Map

PG&E analyzed all three phase line sections for about 3,000+ distribution circuits

- Helps customers and developers in optimally locating DER
- Initially colored by PV Results
- Exploration of new interfaces and data sharing techniques will occur in DRP discussions

PG&E: http://www.pge.com/en/b2b/energysupply/wholesaleelectricsuppliersolicitation/PVRFO/pvmap/index.page

Locational Integration Capacity on PG&E Website

				٢
				L. L
Feeder name: WEST FRESNO	1111 Zone Id	:253731111-64		
	Zone DER Ca	apacities (kW)	Substation	DER Capacities (kW)
DER	Minimal Impacts	Possible Impacts	Feeder Limit	Substation Bank Limit
Uniform Generation (Inverter)	378	-	2,691	4,860
Uniform Generation (Machine)	376	378	2,108	3,745
Uniform Load	1,087	1,881	3,186	26,378
PV	673	-	3,772	6,475
PV with Storage	751	-	4,204	7,217
PV with Tracker	528	-	2,951	5,188
Storage - Peak Shaving	492	-	2,746	4,900
EV - Residential (EV Rate)	1,087	1,881	6,508	34,372
EV - Residential (TOU Rate)	1,087	1,881	4,245	28,442
EV - Workplace	1,087	1,881	4.492	31,181

Notes:

- · Integration Capacity Values last updated on July 1 2015
- Capacity values are based on existing system conditions and do not consider queued projects that are not installed. Please refer to public queue status to see if capacity is possibly already being used by queued projects.
- Capacity values do not guarantee Fast Track approval and/or do not exempt customers from the interconnection process.
- Capacity values are mutually exclusive. Using available capacity for one DER and/or zone will affect other DER and/or zone results.
- · Capacity values do not take into account possible impacts to the Transmission system.
- Capacity values are results based on a new theoretical methodology as part of PG&E's Distribution Resource Plan (DRP) filed July 1 2015 to the CPUC. The methodology and results will be improved and refined in a phased approach outlined in the DRP.

es, map height: 2.57 miles

Provide capacities for 10 different types of DER

- Substation (Bank and Feeder) limits are provided
- Line Section Level results provide a range indicating different capacities based on where interconnection on line section.
- IOU coordination with ICA Working Group will determine best consistent method for result publication this year

CPUC DRP Page with ICA tabulated Results: http://www.cpuc.ca.gov/General.aspx?id=5071

Long term work is to create path forward for how ICA progresses in methodology and utilization

- Enhancements of online maps displaying ICA results
- Improve data sharing of ICA (e.g. more accessible and user friendly)
- Incorporation of Smart Inverters and other voltage regulation devices
- Expand methodology to incorporate load modifying resources (e.g. Non generation DER such as EE and DR)
- Improve modeling of DER load profile shapes
- Engage non IOU validation and comparison of hosting capacity results
- Planning Use Case Establish how ICA is used in the planning context

Locational Value of DERs

Presentation to:

NARUC Summer Policy Summit,

Staff Subcommittee on Energy Resources and the Environment

July 16, 2017

By: Dhaval Dagli, Regulatory Affairs, SCE

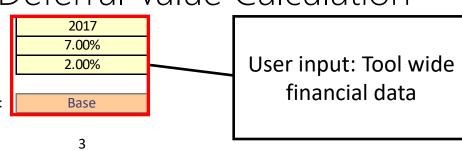
Energy for What's Ahead[™]

Distribution Resources Plan (DRP)

- Analytical Frameworks
 - Grid Integration Capacity Analysis (ICA)
 - Quantification of Distributed Energy Resources' (DER) locational value (aka locational net benefits analysis or LNBA)
 - Growth scenarios forecast
- Demonstration Projects
 - ICA maps
 - LNBA Calculator
 - Other demos
- Policy issues

Locational Net Benefits Analysis (LNBA) Tool

- Optimal location for DERs = available hosting capacity + locational benefits greater than costs
- LNBA Tool calculates locational benefits on an indicative basis
 - Distribution investment deferral value + locational avoided costs
- Distribution investment deferral value identified based on DER services
 - Distribution capacity services
 - Voltage support services
 - Reliability (back-tie) services
 - Resiliency (microgrid) services
- Comparison with costs occurs outside of LNBA calculator
 - DER deployment, interconnection, integration costs

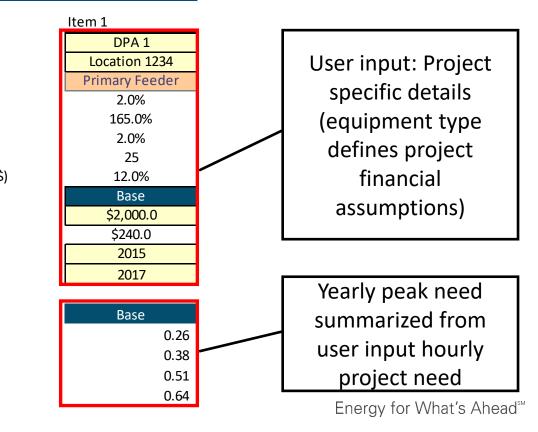

Illustrative

LNBA Tool – Project Deferral Value Calculation

First load forecast year (e.g.: 2016) Discount Rate (%/yr) Generic default inflation rate (%/yr)

Case to use for allocated hourly costs (Base, Low, High):

Deferral Yrs indicated by DER Dashboard

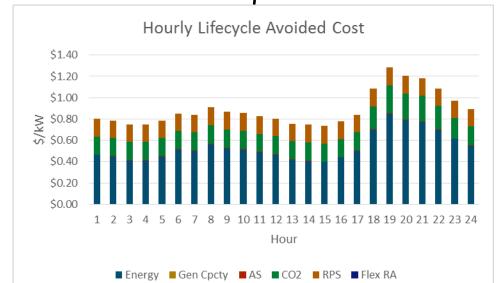


Project cost and need information

Equipment Information Location Identifier (user text) Location Mapping info (User text) Equipment type Equipment Inflation (%/yr) Revenue Requirement Multiplier O&M Inflation Rate (%/yr) Book life (yrs) O&M Factor (Annual O&M\$/Project Cost \$) Cost Information Capital Cost (\$000) Incremental O&M Cost (\$000) Cost yr basis Project install/commitment year

Cumulative MW reduction needed for deferral

- 1 2017
- 2 2018
- 3 2019
- 4 2020

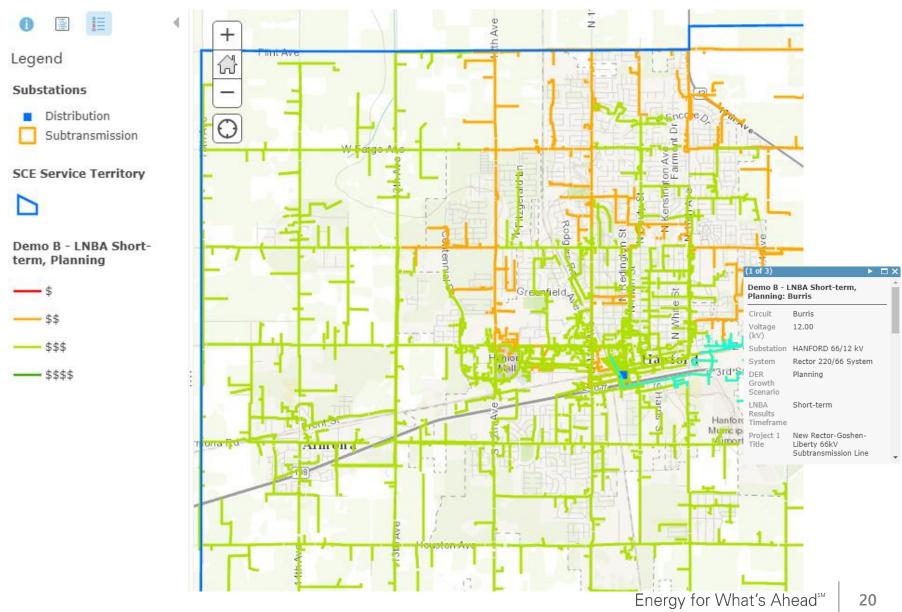

Illustrative

LNBA Tool: Other Avoided Costs Calculation

User inputted hourly DER solution profile

User Input for DER Hourly Shape								
PST								
Hour Starting	Month	Hour	DER at meter (kW)					
1/1/15 12:00 AM	1	0	0.00					
1/1/15 1:00 AM	1	1	0.00					
1/1/15 2:00 AM	1	2	0.00					
1/1/15 3:00 AM	1	3	0.00					
1/1/15 4:00 AM	1	4	0.00					
1/1/15 5:00 AM	1	5	0.00					
1/1/15 6:00 AM	1	6	0.00					
1/1/15 7:00 AM	1	7	0.00					
1/1/15 8:00 AM	1	8	105.30					
1/1/15 9:00 AM	1	9	720.21					
1/1/15 10:00 AM	1	10	154.16					
1/1/15 11:00 AM	1	11	293.76					
1/1/15 12:00 PM	1	12	315.30					
1/1/15 1:00 PM	1	13	175.15					
1/1/15 2:00 PM	1	14	940.02					
1/1/15 3:00 PM	1	15	727.53					
1/1/15 4:00 PM	1	16	174.38					
1/1/15 5:00 PM	1	17	0.00					
1/1/15 6:00 PM	1	18	0.00					
1/1/15 7:00 PM	1	19	0.00					
1/1/15 8:00 PM	1	20	0.00					
1/1/15 9:00 PM	1	21	0.00					
1/1/15 10:00 PM	1	22	0.00					
1/1/15 11:00 PM	1	23	0.00					

Calculated lifetime hourly avoided cost values


Lifecycle Value from DER by Compon							
	Circuit 1102						
Energy	\$1,998,095						
Gen Capacity	\$362,696						
Ancillary Services	\$\$18,462						
CO2	\$794,182						
RPS	\$808,743						
Flex RA	-\$168,364						
	C \ \ / / /						

Energy for What's Ahead[™]

19

Illustrative

Heatmap of LNBA Results

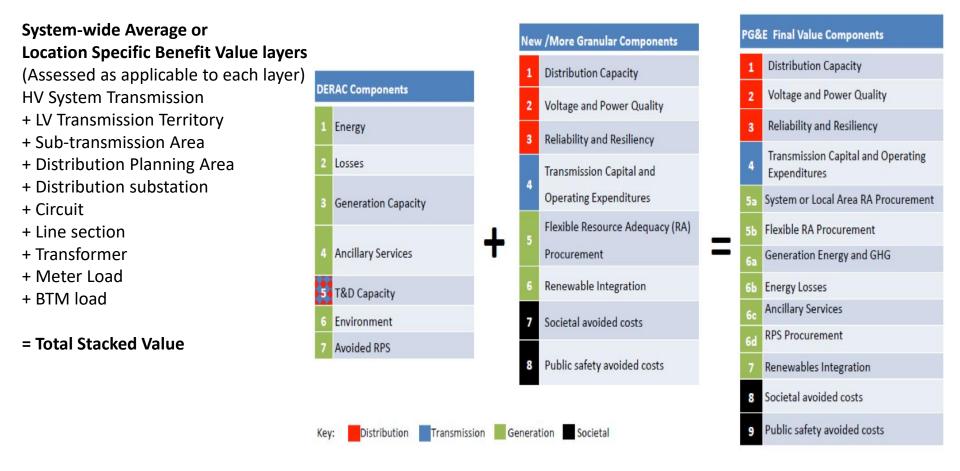
Questions?

Clean Coalition Making Clean Local Energy Accessible Now

Locational Net Benefits Assessment & Distribution Infrastructure Deferral

Limitations, Opportunities & Next Steps

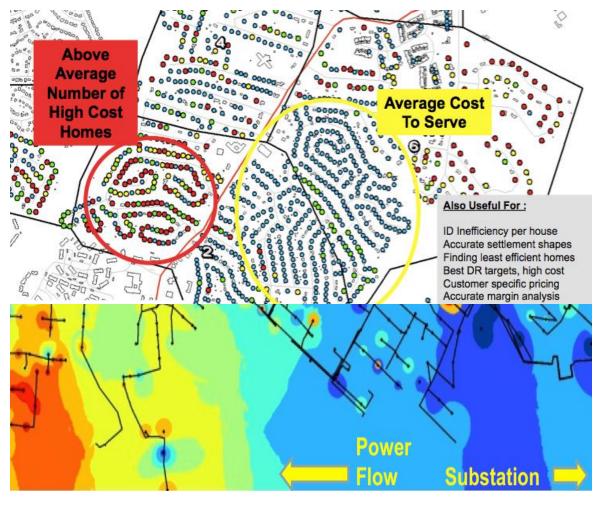
Kenneth Sahm White Director, Policy & Economic Analysis Clean Coalition 831.295.3437 mobile sahm@clean-coalition.org


Making Clean Local Energy Accessible Now

NARUC 16 July 2017

LNBA Value Components

Clean Coalition


Value categories are refined and adjusted for local variation

LNBA Value Components

Clean Coalition

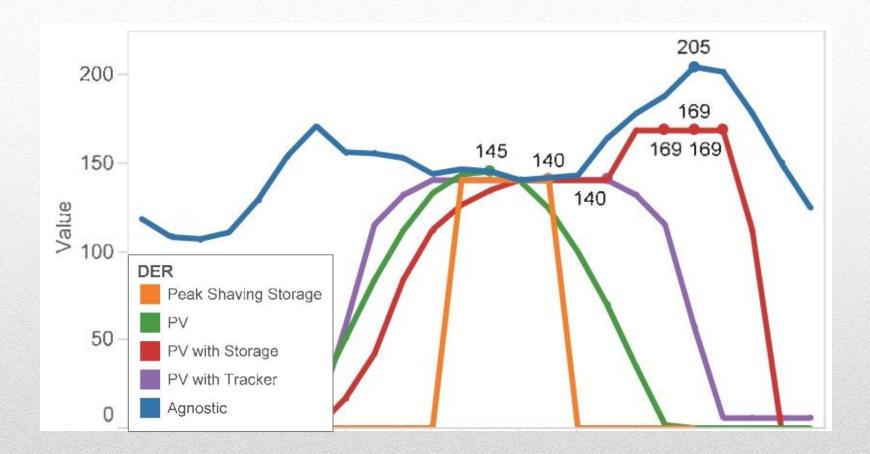
Value categories are refined and adjusted for local variation

	1. Frequency regulation					
ISO/ Market	2. Spin					
	3. Ramp					
	4. Black start					
0	5. Real-time energy balancing					
IS	6. Energy arbitrage					
	7. Resource Adequacy					
tion	8. Intermittent resource integration: wind (ramp/voltage support)					
Generation	9. VER/ PV shifting, Voltage sag, rapid demand support					
	10. Supply firming					
	11. Peak shaving: load shift					
oution	12. Transmission peak capacity support (deferral)					
Transmission / Distribution	13. Transmission operation (short duration performance, inertia, system reliability)					
	14. Transmission congestion relief					
	15. Distribution peak capacity support (deferral)					
Tra	16. Distribution operation (volt/VAR support)					
5	17. Outage mitigation					
Customer	18. Time-of-use (TOU) energy cost					
stoi	management					
Cri	19. Power quality					
	20. Back-up Power					

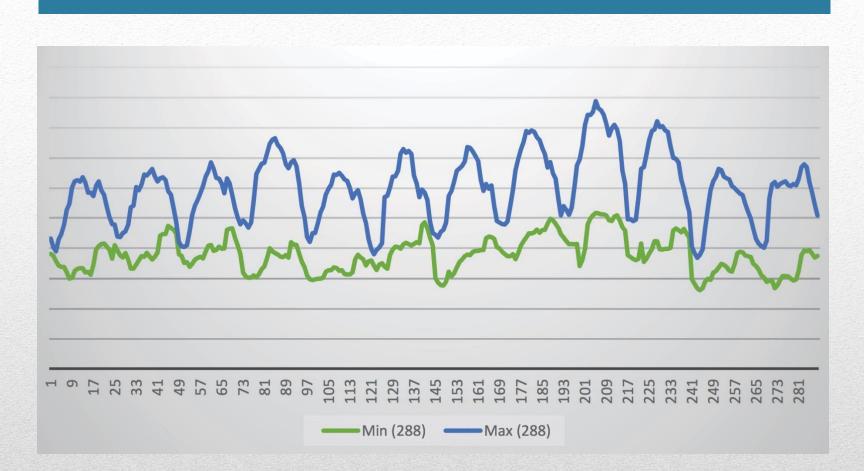
Making Clean Local Energy Accessible Now

LNBA - Distribution Marginal Cost Impacts

	Grid Side	Supply Side	
Variable Costs	Voltage KVAR Power Factor Line Losses Limiting Factors	Ancillary Services Plant Following Wind/ Cloud Firming Current hour LMP	TimeMinutesHours
Fixed Costs / Capacity	Asset Protection Circuit Capacity Deferral Bank Capacity Deferral Future Congestion	Capacity Premium 10 Year LMP Forecasts Future Covariance	Months Years
		Power Flow Substa	


Project Screening & Selection Process

Scoring Metrics	Features	Higher Viability
Screen 1: Technical (Which projects have DER options)	Four DER services: Capacity, Voltage, Reliability, Micro- grid	Thermal mitigation service
Screen 2: Project Timing (rules out many potential projects)	Sufficient lead time within planning cycle	3-5 yearsAllows for procurement& Contingency options
DER Attribute Requirements	DER capacity to deferral ratio (MW/MWh reduction, duration, & timing profile)	Lower DER capacity requirement & Higher siting potential
Project Timing Certainty	volatility in historic and forecast load growth	Nearer term need & Low volatility
Financial Assessment	Higher deferral value	Expensive projects/DER capacity
Customer Composition (Market Assessment)	High load reduction to participant ratio	Customers with large loads
Distribution Topology	Geographic and customer range	Larger area & number of potential participants (substation needs)


Distribution Resources Planning in California

Brad Heavner Policy Director, CALSEIA July 16, 2017

Integration Capacity Analysis Values

Circuit Load Profile – 576 Hours Per Year

Source: SCE ICA Report Dec 2016

Measuring Locational Value

Date & time (Hour Beg)	2025	2026	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
3/1/13 21:00	3,676	3,750	438	500	564	630	696	764	833	904	976	1,050
3/1/13 22:00	3,529	3,600	312	372	434	497	561	626	692	760	829	900
3/1/13 23:00	3,376	3,443	181	239	298	357	419	481	545	609	676	743
3/2/13 0:00	3,243	3,308	68	123	179	237	296	356	417	479	543	608
3/2/13 1:00	3,072	3,133	1000		28	82	138	195	252	311	372	433
3/2/13 2:00	2,889	2,946	8 - 6	-	1923	14	144	22	76	132	189	246
3/2/13 3:00	2,736	2,791	5 .	- 1	-	<u>.</u>	20 4 3	-	-	-	36	91
3/2/13 4:00	2,624	2,676	256		127.2	1	127.2	1.5	2073	1.2		-
3/2/13 5:00	2,533	2,584	1 120	- 3	172-2	<u>N2</u>	10220	9 <u>0</u> 99	an <u>v</u> es			
3/2/13 6:00	2,480	2,530	2490 L	-	87 <u>4</u> 8	8 <u>4</u>	1228	848 J	549	(¥	-	-
3/2/13 7:00	2,572	2,623		-	10 0 3	3 0	1	1	10-01		-	-
3/2/13 8:00	2,857	2,914	2.50	-	127.0	1	127.0	27.5	46	101	157	214
3/2/13 9:00	3,241	3,306	66	122	178	236	295	354	415	478	541	606
3/2/13 10:00	3,631	3,703	399	461	524	588	654	721	790	860	931	1,003
3/2/13 11:00	3,971	4,050	689	757	826	896	968	1,042	1,117	1,193	1,271	1,350
3/2/13 12:00	4,228	4,313	909	981	1,055	1,130	1,206	1,284	1,364	1,445	1,528	1,613
3/2/13 13:00	4,412	4,501	1,066	1,141	1,218	1,296	1,376	1,458	1,541	1,626	1,712	1,801
3/2/13 14:00	4,554	4,645	1,187	1,265	1,344	1,425	1,507	1,592	1,677	1,765	1,854	1,945
3/2/13 15:00	4,628	4,721	1,250	1,329	1,410	1,492	1,576	1,661	1,748	1,837	1,928	2,02
3/2/13 16:00	4,567	4,658	1,198	1,276	1,355	1,436	1,519	1,603	1,689	1,777	1,867	1,958
3/2/13 17:00	4,328	4,415	994	1,068	1,143	1,220	1,299	1,378	1,460	1,543	1,628	1,715
3/2/13 18:00	3,986	4,066	702	770	840	911	983	1,056	1,132	1,208	1,286	1,366
3/2/13 19:00	3,679	3,753	440	503	567	632	699	767	836	907	979	1,053
3/2/13 20:00	3,460	3,529	253	312	372	434	496	560	625	692	760	829
3/2/13 21:00	3,312	3,378	127	183	241	300	360	421	483	547	612	678
3/2/13 22:00	3,174	3,237	9	63	118	175	232	291	350	411	474	537
3/2/13 23:00	3,075	3,136	-	-	30	85	140	197	255	314	375	436
3/3/13 0:00	3,011	3,071	6 	-	127.5	27	81	137	194	252	311	37
3/3/13 1:00	2,897	2,955			02 <u>-</u> 8		028.3	30	85	141	197	255
3/3/13 2:00	2,774	2,829	2 <u>-</u> 99	-	12	14	12	-	120	19	74	123
3/3/13 3:00	2,634	2,687	8 (- (80 - 3		()()	-		-	-	
3/3/13 4:00	2,519	2,569	4. 	-	8070	-	8272	2002	27.2	-	-	-

Load Reduction Need in LNBA Tool

- Where are there constraints that are difficult to surmount?
- Where will capacity additions be more expensive?
- Where is long-term load growth expected?
- In which areas would DER grid services be most effective?

Regional Considerations

Thank you!

Brad Heavner Policy Director, CALSEIA brad@calseia.org 415-328-2683

Staff Subcommittee on Energy Resources and the Environment

NARUC Summer Policy Summit