Tariff Development II: Rate Design for Electric Utilities

> Jess Totten, Director Public Utility Commission of Texas Briefing for the NARUC/INE Partnership

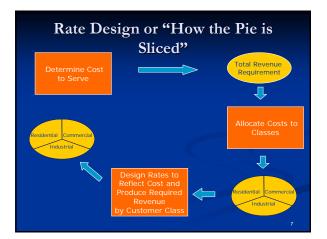
Overview

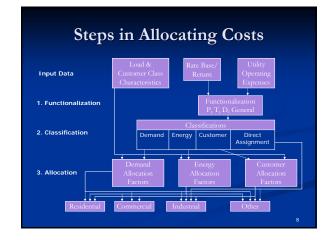
- Objectives of Rate Design
- Steps in Setting Rates
- Cost Allocation
- Rate Design
- Special Rate Issues
- Policy Issues for Rate-setting

Rate Setting

- Rate setting is prospective
- Rates are set today to recover the future cost of service
- Development of the revenue requirement is largely a science
- Rate design involves significant element of art
- Rate setting may fulfill several objectives
- Cost of service practices have been in use since 1890's in US, but developments in information technology and metering may affect these practices
- Rate regulation is an act of government exercising social policy with the objective of enhancing social welfare

Bonbright's Principles for Rates


- Principles of Public Utility Rates by James C. Bonbright
- Rate attributes: simplicity, understandability, public acceptability, and feasibility of application and interpretation
- Effectiveness of yielding total revenue requirements
- Revenue (and cash flow) stability from year to year
- Stability of rates themselves, minimal unexpected changes that are seriously adverse to existing customers
- Fairness in apportioning cost of service among different consumers
- Avoidance of "undue discrimination"
- Efficiency, promoting efficient use of energy and competing products and services


Rate Setting Objectives

- In Texas, rates should not be:
 - Unreasonably preferential
 - Prejudicial
 - Predatory
 - Discriminatory
 - Anticompetitive
- Rates must not embody unreasonable distinctions
- Rates should be just, reasonable, sufficient, equitable, and consistent

Steps in Setting Rates

- Establish utility's revenue requirement
- Allocate revenue requirements to customer classes
- Design rates to recover revenue requirements

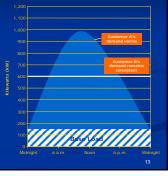
Functionalization

- Step 1: What purpose does the cost serve for the utility?
 - Determine, for each item of rate base and expense, the functional use in the following categories:
 - Production (including purchased power)
 - $\blacksquare {\rm Transmission}$
 - \blacksquare Distribution
 - General or Other
 - Accounting rules should be generally consistent with functions

Classification

- Step 2: What causes the cost to be incurred?
 - Divides the costs, according to causality, into the following components:
 - Demand (Fixed costs that vary with kW demand)
 - Energy (Variable costs that vary with kWh provided)Customer (Directly related to number of customers)
 - Investment in distribution plant to establish basic service
 Metering, accounting, billing and customer service costs

Allocation


- Step 3: How much of the total cost should each customer class pay?
 - Once costs have been functionalized and classified they are:
 Directly assigned to a specific class if wholly attributable to a particular customer or customer class
 - Allocated to customer classes using appropriate allocation factors
 - Objectives or criteria to assess an allocation method
 Reflects cause (cost causation)
 - Reflects usage patterns
 - Produces stable results from year to year
 - Easy to understand by both regulators and customers
 - Accepted by regulators

Assignment or Allocation of Costs

- Assignment or allocation of costs may be straightforward or very controversial
 - Straightforward
 - Energy costs allocated on energy consumption
 - Distribution costs are not assigned to transmission-level customers
 - Controversial
 - Allocation of investment costs of generating facilities is typically a difficult issue

Patterns of Consumption and Allocation

- Customer A's consumption varies during the day. Peak demand is 1,000 kilowatts (kW), and energy consumption is 14,400 kWh
- Customer B's consumption is constant. Peak demand is 600 kilowatts (kW), and energy consumption is 14,400 kWh
- Impact of coincident peak allocator
 Customer A--62.5% of costs
- Customer A--62.5% of costs
 Customer B--37.5% of costs

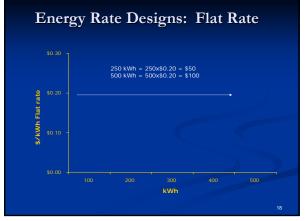
Are Utility Rates Cost-based?

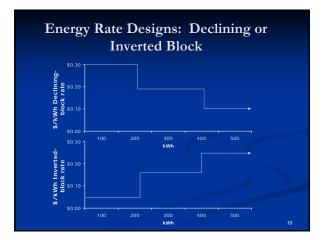
- For some costs, there may be competing methods proposed to allocate costs
 - For demand, 3 CP vs. 4 CP vs. 12 CP
- Class cost of service study is a view of the costs required to serve each class
- Regulator may have reasons not to assign costs in accordance with study
 - Government policy objectives favor a class or an objective (electrification)
 - Changing from existing to rates based on the study may result in a significant increase for some classes

Designing Rates

- Uniform rates applied to groups of similar customers
- Factors applied in designing rates
 - Feasibility—what can be measured
 Demand costs for residential customers recovered through e
 - Stability
 - May use ratchets to spread seasonal costs over entire year
 - Cost causatic
 - Ability of customers to understand charge
 - Marginal costs
 - Rates as incentives
 - Social objectives
 - Low-cost energy blocks

Typical Rate Designs in Texas


Residential charges


- Customer charge (per customer per month)
- Energy charges (per kWh)
- Percentage of revenue charge (taxes)
- Industrial charges
 - Customer charge (per customer per month)
 - Demand charges (per KW)
 - Energy charges (per kWh)
 - Percentage of revenue charge (taxes)

Policy and Practical Considerations Affect Rate Design

 Residential and small commercial energy charges include demand costs and may include customer-related costs

- Demand may not be metered
- Social policies may favor minimum customer charge

Rationales for Block Structures

- Declining block might be used with low customer charge to facilitate broader access to electricity
- Declining block might be used to encourage off-peak
 - consumption Texas utilities have used it for electric heating
- Inverted block might be used to encourage
- Multiple objectives can be addressed through pyramid blocks

Concepts Relating to Demand Charges

- Demand or load:
 - Bate of consumption at a specified time or over a time
 Demand on a utility system is the amount of energy consumed at a specific time
- Coincident peak demand (CP)
 A customer's or customer class's demand at the time of a utility system's peak demand CP may be used to allocate costs to customers
 Non-coincident peak demand (NCP)

- A customer's or customer class's maximum demand, regardless of when the system peak occurs
 Commercial and industrial customers may pay monthly demand charge based on their NCP

Rate Design for Demand Rates

Ratchets

- With a ratchet, customer is billed based on historical demand. Billing demand may be higher of:

 - Some percentage (e.g. 80-85%) of the highest demand during the previous year (or in the peak season)

 - demand

 - Informed customers understand significance of high demand

Special Rate Issues

- Volatile costs
- Marginal cost rates
- Extension of service
- Standby service

Mechanisms for Volatile Costs

■ Fuel and purchased power adjustments

- Fuel or purchased power adjustment clause—utility adjusts charge monthly to reflect costs
 - May also include cost/revenue correction
- Fixed factor-Regulator adjusts charge periodically to reflect

 - Interest to or from customers for imbalance in cost and revenue
 - Reconciliation of costs and revenues, review of reasonableness of

Marginal Cost Rates

- If long-run marginal cost is below embedded cost, utility may seek discounted economic development rate
 - Rate above short-run MC (primarily fuel cost) but below embedded cost
 - To provide appropriate price signal, discounted rate should be above long-run MC
 - Utility may prefer rate below long-run MC to provide disincentive to self-generation
- What is the policy: encourage all industry, encourage industry that creates jobs, encourage or discourage selfgeneration

Extension of Service

- Rates for installation of new service facilities
- Initial charges that cover high percentage of facilities costs
- Initial charges that cover low percentage of facilities costs but include contractual commitment to take service for period of years
- Initial charges that cover low percentage of facilities costs with no contractual commitment
- What is the policy: encourage new service or provide assurance that utility will recover cost of new service

Are There Broader Policy Issues for Rate-setting?

- Traditional rate-setting process is costly in time and resources occurs relatively infrequently
 - Between rate cases, utility has incentive to reduce costs, to maximize profit, if it has a period to enjoy above-normal profit
 - Cost reductions may escape notice of regulator, without perio
 - monitoring Without special fuel or purchased power rate, utility may bear significant field
 - Are we entering a period of instability in commodity costs that will strain rate-setting process?
 - Does rate-setting process afford regulator opportunity to assess utility performance on other important issues, such as quality of service, energy efficiency efforts, or electrification?