REGIONAL MARKETS

Evolution of Rules and Responsibilities

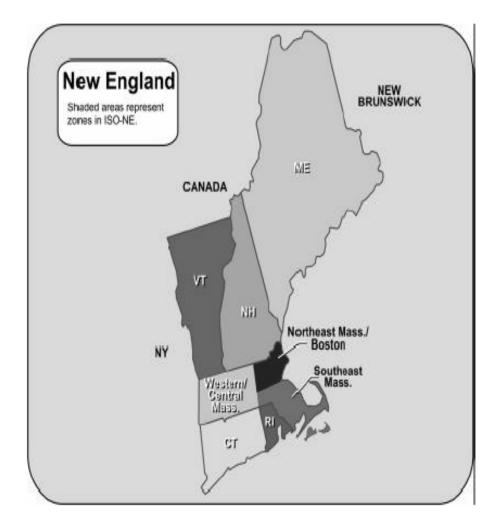
NARUC Energy Regulatory Partnership Program

The Energy Regulatory Commission of the Republic of Macedonia and The Vermont Public Service Board

> by Sandra Waldstein

Vermont Public Service Board

May 25, 2005



- Context and history
- General rules
- Roles and obligations of parties
- Wholesale market results

Regional Market Facts (update)

- ✤ 6.5 million electricity customers
- 8 Zones
- ✤ 230 market participants
 - 7 transmission owners and 8,000+ miles of high-voltage transmission lines
 - 350 generating units
- 2002 highest annual peak load of 25,348 MW
- ✤ Load growth = 2% annually
- ✤ 32,000 MW of installed capacity
 - 35% gas-fired
 - 26% nuclear
 - 35% fossil fuel (coal or oil)
 - Hydro, wood, refuse, wind, imports (4%)
- 88% of generation is unregulated (Vermont is the only state that still regulates companies that own generation – others are divested)
- \$7.25 billion annual transactions

Evolution of The Regional Electricity Market

Timeline

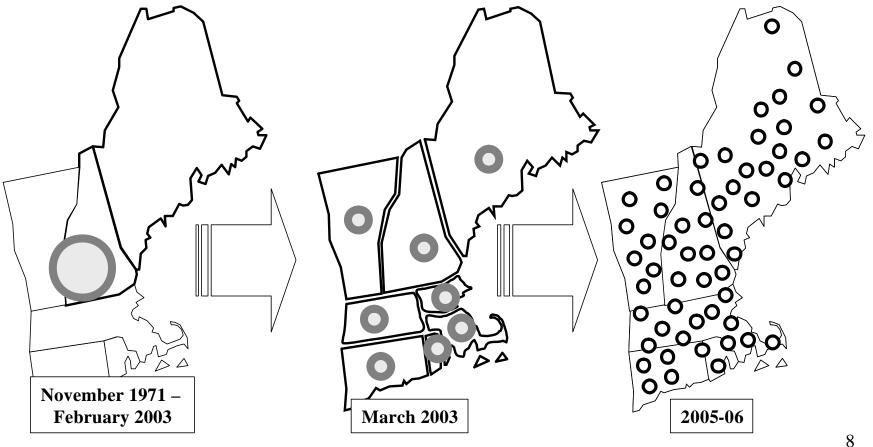
- 1st Year of Wholesale Electricity Market
 Operations 1999
- Standard Market Design and Locational Marginal Pricing implemented in March 2003
- Forward Reserve Market reforms introduced 2004
- Capacity Market reform under discussion

Rules Prior to 1999

- Sormal wholesale electric markets did not exist
 - Single, region-wide reliability and economic dispatch since 1971
- Load serving entities (distribution utilities) were vertically integrated
- Each state regulated retail electric prices based on cost of service
- The six states in the region pooled generation resources for reserve purposes
- Open-Access Transmission Tariff in place: 1997

After 1999 But Prior to SMD

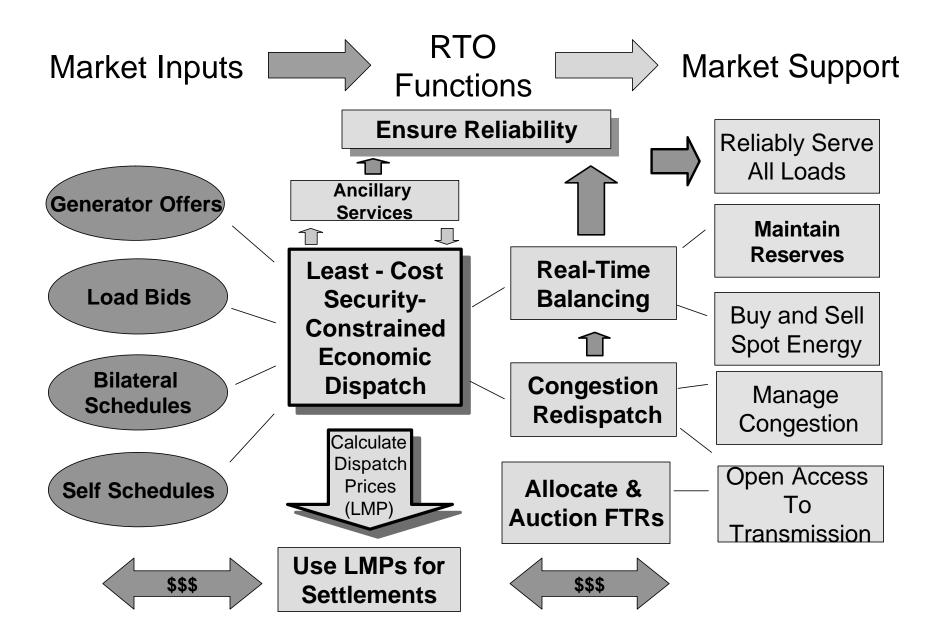
- An Independent System Operator (ISO) was formed
- The ISO dispatches generation according to a least-cost security constrained model
- All load in the region paid one average regional electricity clearing price
- No Day-Ahead market
- States (except VT) began requiring divestiture of generation
- ISO began open access to transmission system



Post-SMD (2003 and beyond)

- ✤ 5 of 6 states fully divested of generation
- ✤ 5 of 6 states have some retail choice
- Locational marginal pricing and congestion management are the backbone of the market
 - LMP = Energy + Congestion + Losses
 - LMPs are calculated at over 900 nodes on the system
- Enhanced risk management tools
 - Bilateral contracts
 - Day-Ahead Market (DAM)
 - Financial Transmission Rights (FTRs)
 - Auction Revenue Rights (ARRs)

Evolution of Rule Changes



New England Wholesale Power Markets - Essential Features

- Locational Marginal Pricing (LMP)
 - LMP is designed to reveal the price of producing power in 8 price zones
 - Vermont is one zone
- Enhanced risk management tools
 - Bilateral contracts
 - Day-Ahead Market (DAM)
 - Financial Transmission Rights (FTRs)
 - Auction Revenue Rights (ARRs)
- Market Monitoring and Mitigation
- Regional System Planning
- ✤ Market Structure
 - 75 percent of the electricity trading in New England is covered under bilateral contracts
 - 25 percent is traded in the real-time spot market

RTO – Standard Core Features

Role of ISO-NE

- ✤ To reliably operate the electric grid
 - ISO has complete authority for reliability
 - Keeps frequency @60Hz
 - Maintains stable voltage
 - Monitors/controls grid flows
 - Manages reserves
 - Handles emergencies
- ✤ To act as the market operator for the New England electric market
 - ISO develops market rules
 - ISO operates the markets
 - ISO is the settlement agent for all transactions
- ISO also performs regional planning and coordination and works with the states
 - For expansion of the transmission system
 - For ensuring resource adequacy in the region

ISO Relationships

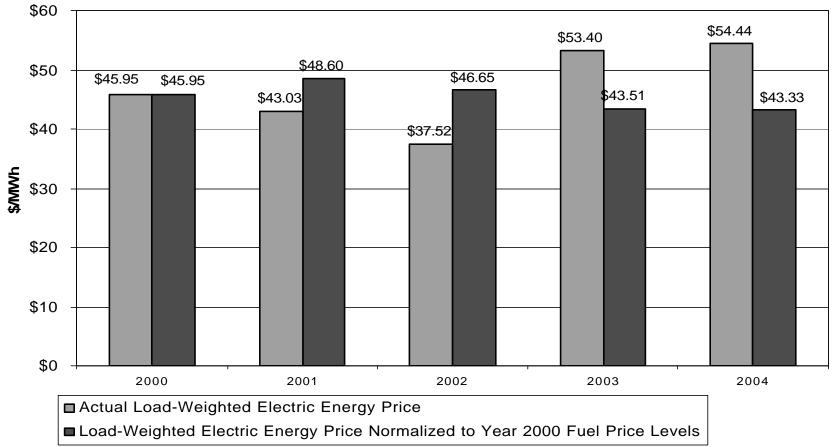
- The ISO is functionally independent from all market participants including transmission owners and generators
- The ISO must provide open access over all transmission facilities to all wholesale customers
- FERC has approved the transition from an ISO to an RTO for New England
 - Increases its independence even more
 - The RTO no longer operates under an agreement with the market participants; market participants role is advisory only
 - The RTO is now funded via its own tariff
 - RTO also improves the ability of the ISO to file market rules

Market Participants' Role

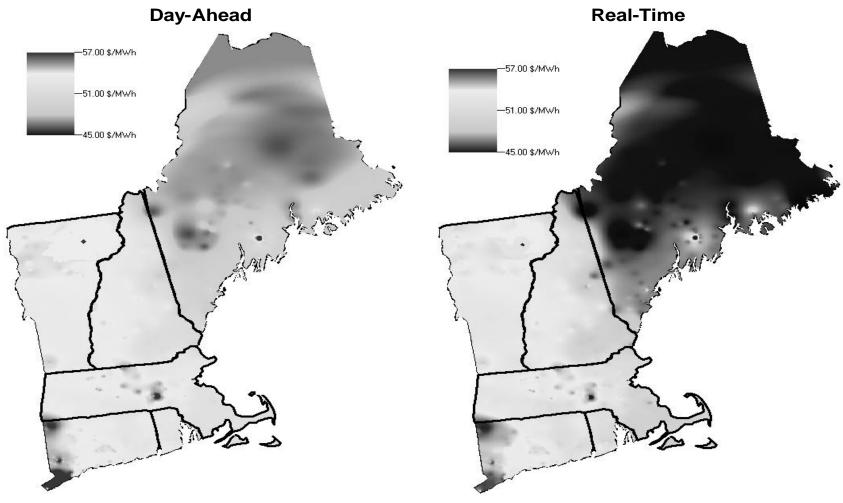
- Market Participants:
 - Act in an advisory role to the RTO
 - Are consulted prior to RTO proposals being filed at the FERC
 - Process can be time consuming and contentious
- ✤ Can file at FERC if they oppose RTO rule changes
- Transmission owners, generators, suppliers, marketers, municipal systems, representatives of large and small consumers, and environmental advocates

Process for Rule Changes:

	Large Projects	Medium Projects
Stakeholder process and Regulatory approval	12-15 months	5-9 months
Project Implementation	15-18 months	9 months
Total Duration	27-33 months	14-18 months


RESULTS (2000 to 2004)

- Overall Wholesale Market Costs
 - Declined by \$700 million annually (fuel cost-adjusted)
- Prices
 - Declined 5.7% overall since 2000 and 11% from 2001 to 2004 after adjusting for fuel cost increases
 - Unadjusted prices have increased 18% since 2000
- Generation
 - \$9 billion invested in new power plants from 2000 to 2004 (a 30% increase)
 - 9,480 MW of new generation
 - Avg. heat rate declined by 5.6%
 - Unit availability increased by 7%
- Transmission
 - \$4 billion in transmission investment
- Demand Response is growing slowly
 - 350 MW enrolled in 2004


Price Results

Actual and Fuel-Adjusted Average Real-Time Electric Energy Prices, 2000 - 2004

2004 Average Nodal Prices, \$/MWh

Additional Benefits

- Environmental improvements as a result of new more efficient power plants (2000-2004)
 - Annual carbon dioxide (CO₂) emissions declined by 6%
 - Nitrogen oxide (NO_x) emissions declined by 32%
 - Sulfur dioxide (So_x) emissions declined by 48%

QUESTIONS?