Regional Transmission Organization Overview

Presented to The Energy Regulatory Office of Kosovo and The Illinois Commerce Commission June 8, 2009

Agenda

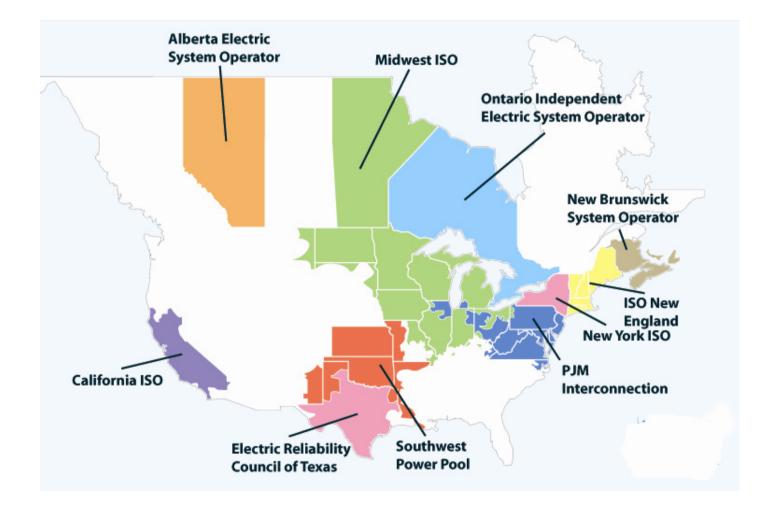
- Regional Transmission Organization (RTO) Background
 - Federal Energy Regulatory Commission
 (FERC) RTO Characteristics and Functions
- Current RTOs
- Midwest ISO (MISO) Specifics
- Major Challenges

FERC Order 2000

- Characteristics identified in the order:
 - Independence from market participants
 - Appropriate scope and regional configuration
 - Possession of operational authority for all transmission facilities under the RTO's control
 - Exclusive authority to maintain short-term reliability

FERC Order 2000 cont'd

- Minimum functions identified in the order:
 - Administer its own tariff and employ a transmission pricing system that will promote efficient use and expansion of transmission and generation facilities
 - Create market mechanisms to manage transmission congestion
 - Develop and implement procedures to address parallel flow issues


Order 200 Functions cont'd

- Serve as a supplier of last resort for all ancillary services required in Order No. 888 and subsequent orders
- Operate a single Open-Access Same-Time Information System (OASIS) site for all transmission facilities under its control with responsibility for independently calculating Total Transmission Capacity (TTC) and Available Transmission Capacity (ATC)

Order 200 Functions cont'd

- Monitor markets to identify design flaws and market power
- Plan and coordinate necessary transmission additions and upgrades
- Interregional coordination

ISOs and RTOs

Comparison of RTO/ISO Services

Services Provided	MISO	ISO- NE	NYIS O	РЈМ	SPP	ERC OT	CAIS O	
Grid Operations	2-02	1997	1 98	1 97	1 97	1 96	1998	
Transmission Scheduling	4	4	4	4	4	4	4	
Regional Economic Dispatch	0	0	0	0	0	0	0	
Transmission Planning	202	1997	1 29	197	1,298	1297	202	
Regional Transmission Planning	4	4	4	4	4	4	4	
Regional Interconnection	Ŏ	Ŏ	Ŏ	Ŏ	ŏ	4	ŏ	
Transmission Cost Allocation Method		00						
Wholesale Market Operations	205	109	109	108	2016	2001	1998	
Real-time Energy Market	4	ŏ	ŏ	ŏ	ĬŎ	ĬŎ	Ó	
Locational Energy Price	4	Õ	Õ	Õ	Õ	2009	Õ	
Hourly Energy Price	4	0	0	0	0		0	
Congestion Price	D.C	O C						
Losses Price								
Day-ahead Energy Market	4	4	4	4	0	2009	2008	
Virtual Bidding	\mathbf{O}	\circ	0	0			2 0 9	
Ancillary Services Market	2009	Ģ	Q	Ģ	Q	Q	Q	
Regulation	2009	4	4	4	2	4	4	
Operating Reserves	2009	4	4	4	2	4	4	
Financial Transmission Rights	4	4	4	4	4	0	4	
Capacity Market	(<u> </u>	arket Capa			urces: IS(RTO Co	ncil: "The Valu Grid Operators
Settlements and Billing	4	Jates repr	esent estir	nated star		oz A <u>l</u> len r		
Market Oversight	2005		1999	1998	2006	2004	1998	

The Midwest ISO's Role

What We Do

- Provide Independent
 Transmission System Access
- Deliver Improved Reliability Coordination
- Perform Efficient Market Operations

Implications

 All parties have equal and non-discriminatory access

• Substantial regional reliability improvements

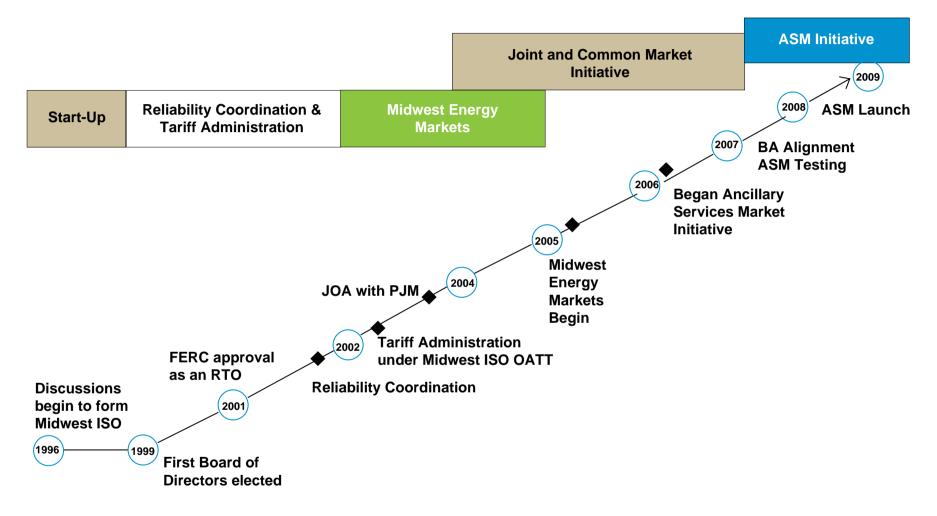
 Lower cost unit commitment, dispatch and congestion management

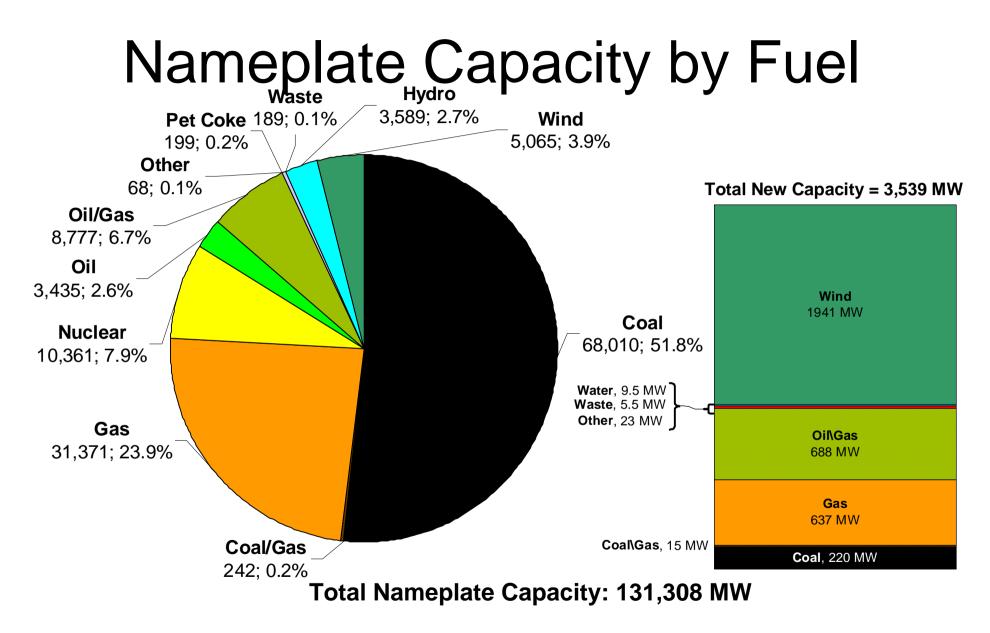
Coordinate Regional Planning

Integrated system planning

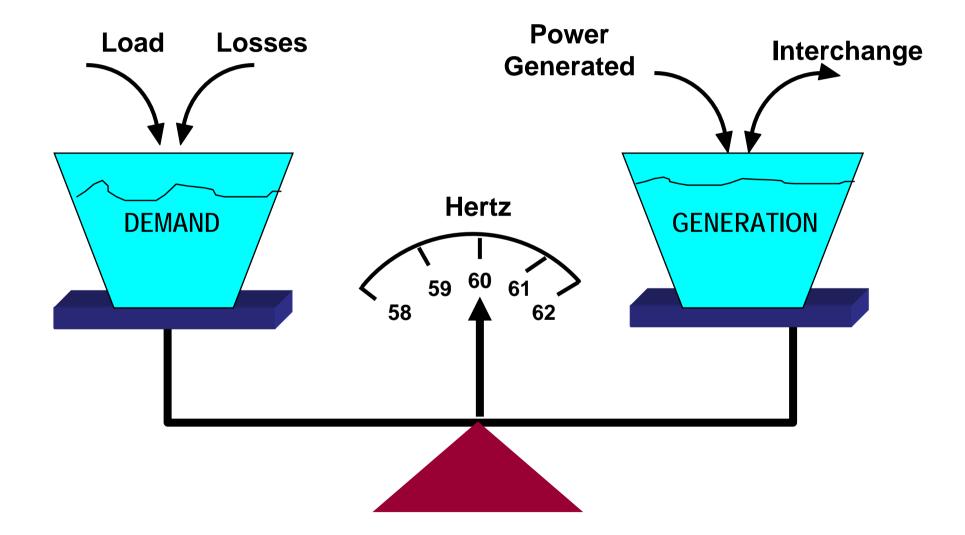
 Foster Platform for Wholesale Market Development

• Encourage infrastructure investment and facilitate regulatory initiatives


Midwest ISO facts

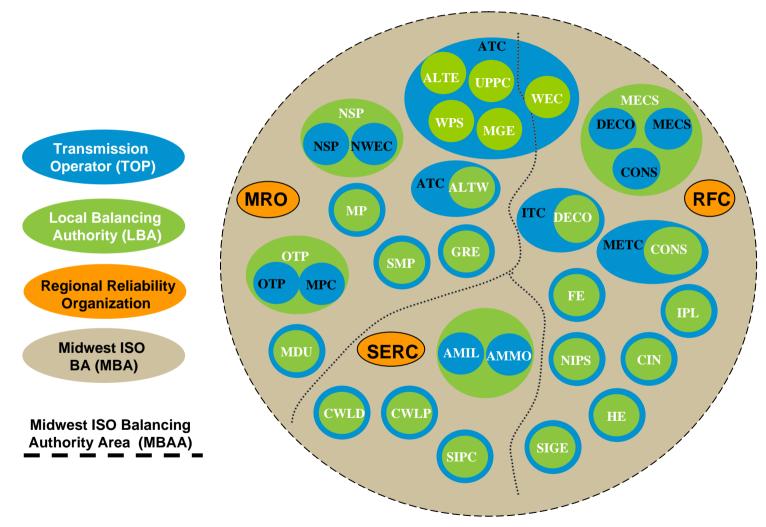

- Independent, voluntary, regulated by the FERC
- Network model: 5,464 generating units
- \$41 Billion energy market
- 1,896 pricing nodes
- Governed by independent eight member board
- 31 transmission owning members
- \$2.4 B in new transmission projects thru 2015

MISO Market Area



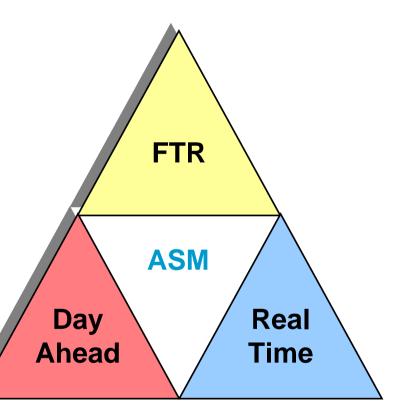
Midwest ISO Evolution

The Energy Balance



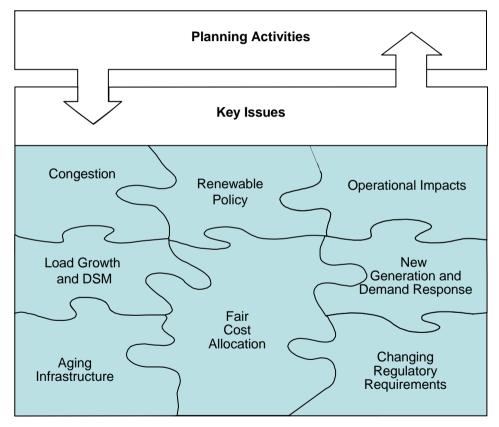
What is a Balancing Authority?

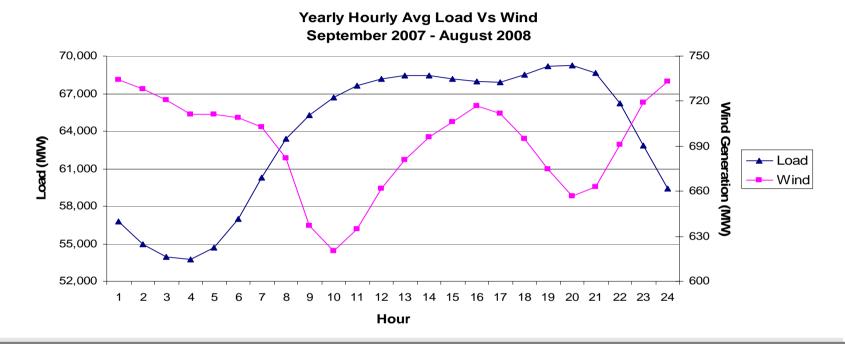
- An electric power system or combination of electric power systems bounded by interconnection metering and telemetering
- Balancing Authority duties
 - Balance Supply and Demand within their area
 - Maintain interchange of power with other Balancing Authorities
 - Maintain frequency of the electric power system within reasonable limits


Balancing Authority Alignment

Energy and Operating Reserves Market Operations

Midwest ISO Market Overview


- The Midwest ISO market consists of four components:
 - Day Ahead Energy Market
 - Real Time Energy Market
 - Financial Transmission
 Rights Market (FTR)
 - Ancillary Services Marke


Ancillary Services

- Integrated into market operations Jan. 6, 2009
- Flexible capacity needed to maintain secure operation of power system
 - Loss or increase of Load
 - Loss or increase of Resources
- Regulation Reserves
- Contingency Reserves (sometimes called Operating Reserves)
 - Spinning
 - Supplemental (non-spinning)

Key Issues Currently Impacting Transmission Planning

Wind Integration Operational Impacts in the Midwest ISO

- In addition to infrastructure costs, operational issues are expected to drive additional Contingency Reserve and market wide charge costs when large quantities of an intermittent resources are online.
 - Ramp Requirements: wind has a negative correlation to daily ramps resulting in need for additional reserves to support ramp
 - Load Following: wind changes in same time horizon as load, resulting in need for additional capacity to meet load
 - Wind Forecasting: accuracy decreases with extended time horizon, introducing inefficiency into the commitment process