

LMI Workshop on Regulation and Regional Coordination Bangkok - Thailand

Interconnections:

Market Coupling, Regulatory and Utility Cooperation

October 14 – 16, 2013

What is Market Coupling?

Market Coupling European Model

Market Integration

- Unbundle vertically integrated industry;
- Promote competitiveness in the generation capacity and allow free entry to new plants;
- Create independent TSOs; and
- Reduce cost of electricity and promote consumer choice and regulate CBT interconnections.

Market Interconnection

- Will allow optimum and efficient use of infrastructure and resources by:
 - Deploying resources at regional level; and
 - Fostering competition among suppliers and among producers.
 - It will help lower the electricity prices.

Market Structure

- Energy markets;
- Capacity markets
- Congestion management;
- Who conducts auctions; and
- Who enforces the rules (in Europe Energy Regulators Group and now ACER).

Market Drivers

- Security (TSOs ensure a continuous match between supply and demand);
- Firmness (operation planning);
- Adequacy (new capacity to meet demand);
- Strategic expansion (long term availability); and
- Social welfare generated by CB trade (affordable electricity).

Major Players

- TSOs agent to build and guarantee capacity and maximize the capacity offered;
- National Regulatory Authorities (NRAs act as the principal in incentive schemes);
- Power Exchanges (PXs balance supply demand); and
- National governments.

Issues for Regulators!

Regulator do not know:

- The extent to which TSOs coordinate with each other;
- The precision and reasons for the security margins kept by TSOs;
- To what extent the CB capacities are maximized; and
- Cost of increasing available capacity or the implication of doing so on operational security.

Obstacles to Interconnection

- Differences in market design;
- The regulatory gap;
- The lack of human and financial resources;
- Lack of incentive regulation; and
- Lack of verifiable information.

Challenges for Regulators

- The cost of reducing lack of information;
- The dynamic aspect of regulation (duration of incentive scheme);
- The multiplicity of the parties (mainly regulators, operators and TSOs); and
- The undesirable incentives that may be created to promote cross border trade (detriment to grid security).

Ideal Incentive Scheme -1

- Designed to maximize consumer benefit;
- Simple and easily understandable by all stakeholders;
- Objectively measurable;
- Controllable by TSOs;

Ideal Incentive Scheme 2

- Challenging and attractive for TSOs;
- Applicable region wise; and
- Compatible with other national priorities.

Market Issues

- Market interconnection (harmonizing the rules of two or more markets);
- Congestion Management (when electricity is unable to flow due to physical constraints).
- Isolation of the supply side of the market from demand side breeds disaster (California energy crisis of 2001).

Case Study - European Single Market

Principles

- Congestion management.
- Transparency.
- Integration of balancing markets.

Source: ERGEG 2006

Congestions

Congestions occurs when the sum of demands for capacity at a specific allocation timeframe exceeds the capacity available at the interconnection.

Structural Congestions: Frequently limit the CB electricity exchange. They may involve one or more transmission lines.

Intermittent Congestions: that may occasionally limit the CB electricity exchange.

Balancing Markets

The real time operation of a power system requires that TSOs ensure a continuous balance between supply and demand. In competitive electricity markets, TSOs can identify the need for, and procure adjustments in, generation or demand – in order to maintain balance in the power system.

Balancing – Means and Goals

17

Congestions Costs

How many hours?

At what cost?

Interconnection Benefits

Source: ERGEG

Surplus Generated by Cross-border Electricity Flow

Source: ERGEG

What is Market Coupling?

Market coupling is a method to manage capacity congestion between adjacent power spot markets by optimizing the capacity allocation. It allows the matching of power exchanges' orders and implicit allocation of available cross-border capacities.

Market Coupling - Benefits

- Optimizes the allocation process through a coordinated price formation;
- Uses implicit auctions where players bid for energy (not capacity) on their exchanges; and
- Maximizes the social welfare, avoids market splitting, and encourages investment in CB capacities.

Prerequisites for Market Coupling

- Market structure: A liquid organized day-ahead market;
- Governance: Consensus among all stakeholders (TSOs, PXs, Regulators, Politics, Market Actors) is needed. One hub can only adhere to one coupling;
- Harmonization of capacity calculation (firmness regimes, region-wise business process, gate closure time, schedule nomination time etc.).

Maximizing Capacities

Maximizing Cross-border Capacities

- Determination of the total level of interconnection capacity across a particular border;
- Determination of a target value of the capacity to be offered; and
- Annual determination of whether the target value has been met by TSOs.

Regulators must Watch for

- Interaction with other objectives such as redispatching, counter-trading etc.;
- Incentives should not reward TSOs for poor past performance; and
- Coordination is needed among stakeholders when defining the targets.

Cooperation is Necessary Condition

- Between TSOs, DSOs and Regulators;
- Between NRAs;
- Between PXs. Regulators and NRAs;
- Between Governments and Regulators; and
- Utilities and Regulators.

Thank you!

mian_zia@hotmail.com

Europe – Fuel Supply Mix

e 1 - Fuel mix electricity generation (GWh and %) year 2009

roduction from:	Austria		Germany		Italy		France	
l and peat	5032	7.294%	257137	43.401%	43416	14.836%	28708	5.295
	1137	1.648%	9639	1.627%	25946	8.866%	6170	1.138
	12338	17.884%	78884	13.315%	147269	50.324%	21013	3.876
fuels	4003	5.802%	25928	4.376%	6015	2.055%	2125	0.392
te	796	1.154%	9634	1.626%	3388	1.158%	3960	0.730
lear			134932	22.775%			409737	75.572
10*	43662	63.288%	24710	4.171%	53443	18.262%	61912	11.419
thermal	2	0.003%	19	0.003%	5342	1.825%		
ur PV	35	0.051%	6579	1.110%	676	0.231%	171	0.032
ır thermal								
.d	1967	2.851%	38639	6.522%	6543	2.236%	7891	1.455
1							497	0.092
er sources	17	0.025%	6363	1.074%	603	0.206%		
Production	68989		592464		292641		542184	

ce: International Energy Agency.