Integrated Resource Planning and Ratemaking

Presentation to the Georgian National Energy and Water Supply Regulatory Commission

> Frankfort, Kentucky May 2010

Aaron Greenwell, Assistant Director, Financial Analysis Division Daryl Newby, Manager, Electric and Gas Rate Design Branch Jeff Shaw, Manager, Electric and Gas Revenue Requirements Branch Jorge Valladares, Public Utility Analyst, Electric and Gas Rate Design Branch Kentucky Public Service Commission

Agenda

- Integrated Resource Plans ("IRPs")
 - Summary
 - Elements
 - Load Forecast
 - Demand Response
 - Integration and Optimization
 - Staff report
- Ratemaking
 - Revenue Requirements
 - Revenue Requirements Steps
 - Rate Base Rate of Return
 - Cost of Capital
 - Cost Allocation
 - Revenue Allocation Rate Design
 - Fuel Adjustment Clause
 - Tariff / Rates
 - Non-Traditional Charges

IRP - Summary

- Related Statutes and Regulations
 - KRS 278.030(3)
 - KRS 273.230(3)
 - 807 KAR 5:058
- Integrated Resource Plan Details
 - Projected load growth
 - Resources
 - Least cost
- Commission Staff Report
 - Analyzes planning process
 - Provides recommendations

IRP - Elements

- Forecast of Projected Load
 - Demand-side and Supply-side resources
 - Least-cost plan for the next fifteen years
- Every three years
 - How energy environment has changed
 - How the utility has modified its plan

IRP – Load Forecast

- Load Forecast
 - Historical and predicted information
 - Demographic information
 - Sales data
 - Economic climate of the region

IRP – Demand Response

- Demand-Side Management
 - Load manipulation
 - Efficiency of its plan
 - Curtail energy demand during heavy load
 - Programs evaluated
 - Results compared
 - High benefits at lowest cost

IRP – Resource Adequacy

- Analysis of Resources
 - Existing units
 - Maintenance / retirement
 - Power purchases
 - Cogeneration
 - Renewable resources
- Diverse Portfolio
 - Greatest efficiency possible

IRP – Integration and Optimization

- Incorporating into a plan
 Implementation
- Contingencies/assumptions modeled
 Lowest cost-to-benefit ratio

IRP – Staff Report

- Critiques the utility's plan
 - Makes recommendations
 - Expectations
 - Emphasis on conservation / efficiency
 - Resource portfolio diversity

Ratemaking Methodology

- Rates are to be fair, just and reasonable KRS 278.030
- Three-step process
 - Determine total allowable revenues Revenue Requirement
 - Allocate costs to each customer class Cost Allocation
 - Establish rates and charges, for each customer class, which allow utility to generate that level of revenue – Rate Design

Determining Revenue Requirements

 $RR = O + D + T + (RB \times ROR)$

RR = Revenue Requirements

O = Operating Expense

D = Depreciation Expense

T = Tax Expense

RB = Rate Base or Total Capitalization

ROR = Rate of Return Authorized (weighted average cost of capital for electric investor-owned utilities ("IOUs")

Revenue Requirements Steps

- Test Period

 Historical
 - Forecasted
- Commission reviews test period revenues and expenses, and makes adjustments
 - Normalize
 - Annualize
 - Amortize

Match revenues and expenses to the periods they affect

Revenue Requirements Steps (continued)

- Does the Test Year Expense represent cost that should be included in customer rates?
- Does the Test Year Expense represent reasonable, continuing cost item?
- Items considered in making adjustments
 Changes in customer composition
 - Changes in customer composition
 - Abnormal weather conditions that affect usage
 - Non-recurring or out-of-period items
 - Known and measurable cost changes

Rate Base – Rate of Return

- For IOUs, return on Weighted Average Cost of Capital
 - Short-Term Debt
 - Long-Tem Debt
 - Cost of Equity (investor-supplied capital)

Cost of Capital (Example)

Capital Structure

(Relative Percentage of Debt and Equity)

Type of Capital	Dollar Amount	Relative Percentage	
Debt =	\$ 400,000 =	40%	
Equity =	\$ 600,000 =	60%	
Total Capital =	\$1,000,000 =	100%	

Weighted Average Cost of Capital

Assume: Cost of Debt = 8% and Cost of Equity = 11%

Type of Capital		Relative Percentage		Cost		Weighted Average
Debt	=	40%	x	8%	=	3.2%
Equity	=	60%	X	11%	=	6.6%
Cost of Capital =					9.8%	

Cost Allocation

- Cost Allocation Factors
 - Sales Volumes
 - Number of Customers
 - Peak Demand(s) and Average Demand(s)

Revenue Allocation – Rate Design

- Class Rate of Return
- Moving toward Cost-Based Rates
- Non-Cost Considerations

Fuel Adjustment Clause

- Purpose
- Frequency
- Components
- Example

Tariff / Rates

- Tariffed Rates
- Special Contracts
- EDR Contracts

Non-Traditional Charges

- Demand-Side Management
- Merger Credits