

INVESTMENT IN TRANSMISSION NETWORKS

ERERA/WAGPA REGULATORY WORKSHOP

24 – 26 APRIL 2012, LOME, TOGO

Prof Jorry M Mwenechanya

Presentation

- Enhancing adequacy
- Pre and Post Reform issues for G &T
- Regulatory challenges
- Need for investment
- Connecting grids

Transmission functions

Transfer power from generators to loads

Interconnect power networks

Enhancing adequacy

Interconnect generation or load

Reduce congestion

Enhancing adequacy

Enhance system reliability (replace old technology)

PROTECTION

CIRCUIT BREAKERS

Enhance operating flexibility

Add switching capability

Increase system efficiency

Replace high-loss equipment (Also DSM in distribution network)

Pre and Post Reform issues for Generation and Transmission

Coordination

BEFORE

G &T Planned together in an integrated utility;
 National master plans in use

AFTER ...

 Generation and transmission planned separately; competition for generation, regulated transmission

Planning Information

BEFORE

 System adequacy is tested by modelling (line flows and bus voltages); Information readily available (or obtainable) in the utility

AFTER ...

 Modelling may be constrained by unwillingness of players to provide 'sensitive' commercial data

Level of Adequacy

BEFORE

 Determined by utility with approval of ministry of energy (as regulator), but Master Plans rarely implemented

AFTER ...

 Generation and transmission generally inadequate, Approval of new generation and transmission by regulator/government

Pricing

BEFORE

 Embedded-cost pricing had little effect on either generation or transmission adequacy

AFTER ...

 Real-time energy pricing will affect generation adequacy; congestion pricing will guide transmission investments and locations of new generation

Roles of markets and regulation

BEFORE

 State regulation and central planning dominate adequacy decisions (but all limited by lack of investment)

AFTER ...

 In theory, markets dominate generation adequacy decisions and affect transmission adequacy decisions. Regulatory authority shifted from government to independent regulator

Cost Allocation in Unbundled Transmission

Technical requirements are the same as in a V.I. utility

BUT

Additional requirement is that transmission should not constrain market transactions: economic dispatch

The benefits may accrue to producers and consumers in a different location from the transmission location

Questions arise about who pays for investment if it is purely for market facilitation.

Regulatory Challenge: Pricing transmission to promote investment and to ensure fair allocation of costs

ROR:
$$PQ = Br + E + d + T$$

Approval on the basis of revenue requirement may not provide sufficient safeguards against 'over-investment' or gold-plating

Approval on the basis of 'used and useful' notion could cause <u>under-</u> <u>investment</u>

Unfair costs to customers

Inadequacy, low reliability

Regulatory Challenge: Pricing transmission to promote investment and to ensure fair allocation of costs

$$P_{0} = \frac{PCR}{Br + E + d + T}$$

$$Q_{0}$$

$$(P_{t+1} - Pt)/P_{t} = RPI - X$$

The risks are essentially the same:

If X is set too low, tendency will be to overinvest, if too high, there is likely to be insufficient investment

Additional challenge: Construction periods long, payback periods long, both far in excess of regulatory periods

Regulatory risk for investor: the likelihood that the regulator will not abide by initial agreements; tendency to renege due to political pressure or exogenous changes in the industry

Transmission Investment

Sufficient transmission resources to support balance of load and generation

Typical daily demand curve

A: Additional potential energy if load is constant at MD, maximum demand

B: Actual energy used per day

http://www.youtube.com/watch?feature=player_detailpage&v=AS Wa7Xs2FGo

California ISO DEMAND CURVE (select, right click; presentation mode: just click)

Capacity and reliability adequacy are interrelated concepts

Generation and transmission must have capacity to supply Maximum Demand,

Transmission lines usually designed to meet projected demand for several decades: cost of transmission small compared to generation plant.

CONNECTING GRIDS

Justification for Interconnectors

Shared generation resources:, hydro, thermal

Improved reliability: shared operating margins

Facilitate electricity markets: WAPP, EAPP, SAPP

WAPP Interconnected Countries 2011-12

POTENTIAL OF THE INGA DAM OF THE DRC

Some questions

How should regional investment be COORDINATED?

Partly depends on type of transmission management and ownership – Several examples worldwide of TRANSCOs and ISOs.

ZTK*: Each territory responsible for construction of in-country portion of interconnector; issues of pricing as yet unresolved; Committee of ministers from the three territories take decisions.

^{*}Zambia-Tanzania-Kenya Interconnector

How should COSTS be allocated?

Investment may target customers in a different territory.

BUT...

Can be difficult to determine actual beneficiaries because of physics of electron flow

Such investments often have multiple benefits, including: improved reliability and reduced operating margins (more capacity available)

Example of DRC-Zambia Interconnector

What is the role of the regional REGULATOR?

Work with power pools to develop menus of investment options taking account of national frameworks, structures;

Determine pricing to stimulate necessary investment and equitable share of costs (beneficiaries should bear burden).

Should resist revision of regulatory regime *ex post*.

Regional regulatory imprimatur is desirable

End of slides