

Economic Evaluation of Generation Investments (Long-Term Contracting)

Jason N. Rauch, Ph.D. Maine Public Utilities Commission September 10, 2014

Agenda

- Long-Term Contracting Authority
 - Statutory Background
 - Overview of Process
- Evaluation of Proposed Generation
 - Market Forecasts
 - Modeling Net Benefit (or Cost) of Contract Products
 - Examination of Other Economic Factors (e.g., Externalities)
- Other Long-Term Contracting Economic Evaluations
 - Cash Flow Model & Rate of Return Evaluation
 - Community-Based Renewable Contracting
 - Quantification of Economy-wide Benefits
 - Ocean Energy Contracting
- Conclusions

Competitive Electricity Generation Markets

- Generation is not economically regulated
 - Price discipline enforced through competitive marketplace
 - Only general business regulations apply
 - business regulators, not utility regulators
- Despite advantages, some potential disadvantages of Competitive Electricity Markets are
 - Price Volatility and Uncertainty
 - Limited Access to Long-Term Contracts
 - Power plant financing & development may be difficult
- Authority to enter into Long-Term contracts is a policy mechanism meant to alleviate some of these disadvantages
- A long-term contract in a competitive electrical generation market is similar in ways to buying a commodity futures contract (e.g., as a hedge)

Maine PUC Long-Term Contracting Authority

- Maine PUC Authority to Direct Utilities to Enter Into Long-Term Contracts for Energy Supply
 - Maine PUC runs bid solicitation and evaluation (other New England states have the electric utility run the bid process)
 - Maine electric utilities are involved by
 - Providing comment on proposed long-term contract terms
 - Aiding development of long-term contract of selected proposals
- Term Up to 10 Years, Unless Maine PUC Determines Longer Term in Public Interest
- Preference for New Renewable Resources
- Authority is specified in Rule, Chapter 316:
 - <u>http://www.maine.gov/sos/cec/rules/65/407/407c316.doc</u>

Maine PUC Long-Term Contracting Process

- Bids are evaluated based upon statutorily specified energy policy goals:
 - Lower Electricity Rates
 - Costs below long-term market projections
 - Hedge Against Price Volatility (Electricity Market Uncertainty)
 - Promote Development of New Generation Resources
 - Provide price stability for new generation resources seeking financing
 - Ensure growth in renewable energy capacity to help mitigate greenhouse gas emissions
 - Cost-Effective Substitution for Transmission
- Comment on bids is provided from the electric utilities and the Maine Office of the Public Advocate
- Bid proposals remain confidential unless selected
- Long-term contract becomes public upon execution

Economic Evaluation of Bids: Development of Market Forecasts

- First step is to get market forecasts
 - Forecasts for all proposed contract products
 - Energy, Capacity, Renewable Energy Credits (RECs)
- Maine PUC hires consultant to develop forecasts
 - Sophisticated New England energy market simulation model
 - Fuel price forecasts
 - Natural gas, oil, coal
 - Carbon price forecast
 - Regional Greenhouse Gas Initiative (RGGI) cap-and-trade program
 - Generator retirements and new entry forecasts
 - Based upon forecasted renewable portfolio standard requirements and new natural gas entry
 - Transmission forecasts
 - Both electricity and natural gas networks
 - Load forecast
 - Incorporates New England market rules, mechanisms, and physical topology
 - Forward Capacity Market
 - Electricity Transmission Network Topology
 - congestion and losses in New England "zones"

Economic Evaluation of Bids: Use of Energy Market Forecasts

- Forecast is for annual average prices at the market reference hub
 - Also on-peak and off-peak prices, and monthly resolution possible
 - 20 year forecast
- Consultant may develop multiple forecasts following different future scenarios
 - Maine PUC may develop its own additional scenarios or sensitivities
- Maine PUC applies forecasts to individual generation project proposals
 - Account for location of project
 - De-rate New England market reference hub forecast based upon estimated losses and congestion
 - Examine historic Locational Marginal Prices (LMPs) near project site (data from ISO-NE)
 - Extrapolation of forecast sometimes necessary (if proposed contract >20 years)
 - Evaluation varies by technology
 - Natural Gas facility economics hinge on relative efficiency (heat rate) compared to market
 - Because natural gas is usually the marginal unit setting the market price
 - Biomass, Hydro, and Nuclear may simply look at proposed long-term contract pricing relative to annual average
 price forecasted (de-rated for location)
 - Wind, Solar, and other price-taking technologies may require an hourly analysis
 - Coincidence of project output with hourly wholesale market may result in higher or lower value energy
 - Developer provides modeled expected hourly output of proposed project
 - Combine monthly resolution forecast with historic hourly LMP price pattern and project hourly output

Economic Evaluation of Bids: Use of Capacity Market Forecasts

- Forecast is for annual average clearing price of Forward Capacity Market
 - 20 year forecast
 - First few years prices are already known (capacity commitments are 3-year forward-looking)
- Maine PUC applies forecast to individual generation project proposals
 - Account for location of project
 - Some areas in Maine are transmission constrained = not eligible for capacity payments
 - Extrapolation of forecast sometimes necessary (if proposed contract >20 years)
 - Evaluation varies by technology
 - Use ISO-NE guidelines for likely amount of qualifying capacity (varies by technology)
 - Capacity quantity a function of the expected capacity factor at the time of system summer and winter peaks
 - For example, for summer qualified capacity
 - » Solar = qualifying capacity higher than suggested by average capacity factor
 - » Wind = qualifying capacity lower than suggested by average capacity factor

Bid Price Evaluation: Hypothetical Example

Wind Lo	ng-term Contract									
Bid Analys	sis - Initial Bid	Net Benefit	NPV@7%	<mark>\$12,931,184</mark>						
	Nameplate Capacity	20'	14 2015	2016	2017	2018	2019	2020	2021	2022
Wind	100 MW	est. capacity factor	30.2	%						
		2.50% Price Escal	ator							
Contra	ct Quantities, Costs									
	Contract Year		1	2	3	4	5	6	7	8
	Capacity (Summer Qualified MW)		0.0	0.0	0.0	0.0	0.0	15.1	15.1	15.1
	Energy (MWh)		264,552	264,552	264,552	264,552	- /	264,552	264,552	264,552
	RECs (MWh)		264,552	264,552	264,552	264,552		264,552	264,552	264,552
	Proposed Energy & Capacity Price (\$/MWh)		55.00		57.78	59.23	60.71	62.23	63.78	65.38
	Proposed REC Price (\$/MWh)		15.00	15.38	15.76	16.15		16.97	17.40	17.83
	Contract Cost (\$)		18,518,640	18,981,606	19,456,146	19,942,550	20,441,114	20,952,141	21,475,945	22,012,844
Contra	ct Value									
	Energy Forecast (\$/MWh)		49.00		51.98	53.54	55.15	56.80	58.51	60.26
	Capacity Forecast (\$/kW-mnth)		3.43	3.15	7.03	6.48		7.16	7.38	7.60
	REC Forecast (\$/MWh)		30.00	29.10	28.23	27.38		25.76	24.99	24.24
	Total Contract Value (\$/MWh)		79.00	79.57	80.21	80.92	81.71	87.47	88.55	89.71
	Total Contract Value (\$)		20,899,608	21,050,403	21,220,007	21,408,557	21,616,204	23,140,874	23,426,176	23,732,306
Benefi	t									
	Net Benefit (\$)		0 2,380,968	2,068,797	1,763,861	1,466,007	1,175,091	2,188,732	1,950,231	1,719,462
	Benefit (\$/MWh)		9.00	7.82	6.67	5.54	4.44	8.27	7.37	6.50
				Discounted t	o 2014\$					
		Benefit Nominal (NPV @ 0)%)	Benefit (NPV	@ 7%)		Benefit (NPV	@ 10%)		
		\$ \$20,096,5		\$	\$12,931,184		\$ `	\$10,936,036		
		Levelized Annual Bene	efit	Levelized	Annual Benefit		Levelize	d Annual Benefit		
		\$1,004,8			\$646,559			\$546,802		
			3.8 per MWh		1	per MWh			per MWh	
			•			•		· · · · ·	•	

Economic Evaluation of Bids: Net Benefit or Cost Result

- Apply discount rate to annual costs or benefits of proposed pricing
 - 7%, 10%
 - Present Value Benefit or Cost
- Levelize (normalize) to MWh output
 - Helps to compare present value benefit or cost across different size projects
- Examine results from different forecast scenarios
- May negotiate back and forth with bidder on proposed pricing depending upon analysis results

Economic Evaluation of Bids: Externalities and Other Factors

- External Benefits and Costs
 - Marginal Benefits
 - Market suppression effect
 - Hedge value
 - Carbon emission avoidance (social cost of carbon)
 - Marginal Costs
 - System integration
 - Capacity market
- Financial strength of developer
 - Ability to obtain financing
 - Ability to execute project

Long-Term Contracting Results

- Three solicitations have been run (in 2009, 2010, 2013), with a fourth solicitation open now for new renewable resources only
 - Statute requires solicitations be run no less than every three years
- Two Long-Term Contracts
 - Rollins Wind Power Project
 - Energy, Capacity
 - Twenty Years
 - 60 MW
 - Verso Paper Biomass Project
 - RECs, Capacity
 - Five Years, Additional Five Year Option
 - 20 MW Capacity, 30 MWh/hr RECs
- One pending Long-Term Contract
 - Apex Downeast Wind Power Project
 - Energy, Capacity
 - Twenty Years
 - 90 MW

Economic Evaluation in Other Maine Programs

- Other Incentive Programs
 - Long-term contracting for ocean energy pilot projects
 - Long-term contracting for community-base renewable energy projects
- Generally, similar economic evaluation approach
 - Obtain and develop market forecasts
 - Assess net contract product costs, on present value basis, of projects
- Some differences because above-market contracts
 - May examine developer "pro forma" (project cash flow model)
 - Assess reasonableness of financing sources and expected rate of return
 - May examine macroeconomic impacts of project
 - Modeling net job creation, addition to State economic output

Community-Based Renewable Energy Pilot Program Overview

- Encourage development of community based renewable energy resources
- Incentive based program providing either
 - Renewable Energy Credit (REC) multiplier of 150%
 - Long-Term Contract (feed-in tariff) capped at 10 cents / kWh
- Overall program capacity limitation of 50 MW
- Individual utility service territory limitations
- Details of Program specified in Rule, Chapter 325:
 - <u>http://www.maine.gov/sos/cec/rules/65/407/407c325.doc</u>

Community-based Project Eligibility

- Eligible Resources
 - Fuel cells, tidal power, solar installations, wind power, geothermal, hydroelectric, biomass
- Capacity Limitations
 - May not exceed 10 MW
- Community-Based
 - Maine residents, municipalities, nonprofits, Indian tribes or corporations at least 51% owned by Maine residents
- Local Support
 - Resolution of support from municipal legislative body
- Grid Interconnection
- In-Service Date
 - Within three years of certification

Economic Evaluation: Community-based Long-Term Contracts

- Program Cost Containment Provisions
 - May not exceed 10 cents/kWh
 - May not exceed project cost and reasonable rate of return
 - Contract term may not exceed 20 years
 - 50 MW limit in program participation
- Evaluate bid prices versus market forecasts
 - Similar to regular long-term contracting evaluation
 - However, may exceed market value (contract can be a net cost), but not exceed 10 cents/kWh
- Evaluate "pro forma" (cash flow model)
 - Assess viability of financing sources
 - Assess for reasonable rate of return

Additional Economic Evaluation of Community-**Based Energy: Cash Flow Model**

- Developers provided "pro forma" (project cash flow model)
 - Confidential (protective order)
 - Yearly cash flows
 - Costs
 - Capital Expenditures
 - Operational Expenditures
 - Financing costs (debt, equity)
 - Revenues
 - Long-term contract sales
 - tax credits
 - grants

Cash Flow Model: Hypothetical Example

Project Location: Moldova, Maine Wonderland Hydro			dro Proj	iect	Energy Price		9	cents/kWh													
Cash Flow Projection		nameplat	te capacity	1	MW	RI	EC Price	3	cents/kW	/h			IRR	11%							
	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Construction Year	1																				
Operating Year		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Initial Capital Costs (\$000)	(\$3,000)																				
Revenue (\$000)																					
Power Sales																					
(40% capacity factor)		315.4	315.4	315.4	315.4	315.4	315.4	315.4	315.4	315.4	315.4	315.4	315.4	315.4	315.4	315.4	315.4	315.4	315.4	315.4	315.4
Capacity Payments		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
REC Sales		105.1	105.1	105.1	105.1	105.1	105.1	105.1	105.1	105.1	105.1	105.1	105.1	105.1	105.1	105.1	105.1	105.1	105.1	105.1	105.1
Total		426	426	426	426	426	426	426	426	426	426	426	426	426	426	426	426	426	426	426	426
Expenses (\$000)																					
Depreciation (\$5M @ 5% for 20 yrs)	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150
O&M (at inflation rate)		96.0	98.4	100.9	103.4	106.0	108.6	111.3	114.1	117.0	119.9	122.9	126.0	129.1	132.3	135.6	139.0	142.5	146.1	149.7	153.5
Legal & Environmental		1.1	1.1	1.2	1.2	1.2	1.2	1.3	1.3	1.3	1.4	1.4	1.4	1.5	1.5	1.6	1.6	1.6	1.7	1.7	1.8
Property Taxes & Insurance		1.6	1.6	1.7	1.7	1.8	1.8	1.9	1.9	1.9	2.0	2.0	2.1	2.2	2.2	2.3	2.3	2.4	2.4	2.5	2.6
Total		249	251	254	256	259	262	264	267	270	273	276	280	283	286	289	293	297	300	304	308
Net Cash Flow (\$M)	(\$3,000)	\$178	\$175	\$173	\$170	\$168	\$165	\$162	\$159	\$156	\$153	\$150	\$147	\$144	\$140	\$137	\$134	\$130	\$126	\$123	\$119

Community Renewables Pilot Program Results

- Certified projects
 - Long-term contracts
 - Exeter Agri-Energy (980 kW)
 - Jonesport Wind (9.6 MW)
 - Pisgah Mountain Wind (9 MW)
 - Goose River Hydro (375 kW)
 - Maine Wood Pellets (7.1 MW)
 - Shamrock Wind (10 MW)
 - Potential Long-term contract
 - Clinton Agri-Energy (5.86 MW)
 - REC Multiplier
 - Fox Island Wind (4.5 MW)
 - Good Will Hinckley School Solar (26 kW)
 - ReVision Solar-Unity College (37 kW)
 - Revision Solar- Riding to the Top (34 kW)
 - Lewiston-Auburn Water Authority biodigester (460 kW)
 - 50 MW program cap / <10 MW per project cap
 - Program is fully subscribed

Ocean Energy Long-Term Contract Solicitation: Overview

- Qualifying Projects
 - Deep-Water Offshore Wind Energy Pilot
 - Located in Gulf of Maine
 - Connected to Transmission System in Maine
 - Employs Floating Turbines
 - 300 Feet or Greater Depth
 - No Less than 10 Nautical Miles from Land Area
 - Tidal Energy Demonstration
 - Tidal Action as Source of Electrical Power
 - Primary Purpose Testing Tidal Energy Technology
- Solicitation Requirements
 - Long-Term Contracts
 - Up to 20 Years
 - No More than 30 MW
 - Energy, Capacity, Renewable Energy Credits
 - Price Mitigation
 - Take Advantage Federal Support and other State funds
 - Limitation on Electric Rate Impact
 - No More Than 0.145 cents per kWh (\$1.45 / MWh)

Ocean Energy Long-Term Contract Evaluation

- Statutory Evaluation Criteria
 - Technical and Financial Capability
 - Tangible Economic Benefits
 - Relevant Experience
 - Commitment to Invest in Manufacturing Facilities
 - Federal Support
 - Project Information
 - Size, Location, Technology, Cost
 - Permitting Status
- Long-Term Contract Economic Evaluation
 - Assess proposed product pricing compared to market forecasts
 - examine developer "pro forma" (project cash flow model)
 - examine macroeconomic impacts of project

Additional Economic Evaluation of Ocean Energy: Economic Impacts

- Examine macroeconomic impacts of project
 - Models of economic output
 - JEDI model
 - Jobs and Economic Development Impact
 - Department of Energy, National Renewable Energy Lab (NREL)
 - REMI model
 - Regional Economic Models, Inc.
 - IMPLAN model
 - IMpact analysis for PLANning
 - MIG, Inc.
 - Economic impact is defined as
 - Output (i.e., sales revenue) & employment and labor income (e.g., wages and salaries)
 - Jobs created
 - Direct and indirect impacts
 - multiplier effects
- Issues
 - Gross vs. Net Impacts
 - Methodological Assumptions
 - Geographic, temporal, and sector resolution

JEDI Model

- Uses project-specific data or default inputs (derived from industry norms)
 - Users can specify
 - Construction Costs, Equipment Costs, Annual Operating and Maintenance Costs, Financing Parameters, Other Costs
- Estimates:
 - Jobs
 - Earnings
 - Output
- Impacts distributed across three categories:
 - Project Development and Onsite Labor
 - Local Revenue and Supply Chain Impacts
 - Induced Impacts
- JEDI model defaults are based on interviews with industry experts and project developers.
- Economic multipliers contained within the model are derived from IMPLAN and state data files

JEDI Model Output: 5 MW ORPC Tidal Project

- Construction phase
 - \$8.1 million in earnings
 - \$22 million in economic output
 - 125 full-time equivalent jobs in Maine
 - 23 direct
 - 67 inter-industry or supply-chain
 - 33 induced (resulting from increases in household spending)
- Operating phase
 - \$0.7 million per year in earnings
 - \$1.1 million per year in economic output
 - 19 new full-time equivalent jobs annually in Maine
 - 15 direct
 - 2 supply chain
 - 1 induced

REMI Model

- Incorporates aspects of four major modeling approaches:
 - Input-Output
 - Captures industry structure of a particular region (e.g., Maine)
 - General Equilibrium
 - reached when supply and demand are balanced.
 - tends to occur in the long run, as prices, production, consumption, imports, exports, and other changes occur to stabilize the economic system
 - Econometric
 - underlying equations and responses are estimated using advanced statistical techniques
 - estimates are used to quantify the structural relationships in the model
 - Economic Geography
 - productivity and competitiveness benefits of labor and industry concentrations (agglomeration economies)
 - modeled in the economic geography equations

REMI Model Output: Statoil 12 MW Maine Hywind

Table 1 - Direct and Indirect Employment

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6+
Direct Employment	10	21	19	233	233	20
Indirect Employment	6	12	12	59	58	10
Total	16	32	31	292	291	30

Table 2 - Estimated Total Earnings Generated in Maine

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6+
Employment	16	32	31	292	291	30
Wages & Salaries (Thousands Nominal \$)	\$660	\$1,410	\$1,440	\$6,570	\$7,360	\$1,777
Regional Output (Thousands Nominal \$)	\$1,020	\$2,060	\$1,940	\$8,890	\$9,200	\$2,011

IMPLAN Model

- input-output framework that traces the flows of expenditures and income through the Maine economy
- uses a complex system of accounts that are uniquely tailored to the region
 - version 3.0 of IMPLAN model has information on 440 sectors of the economy
 - information regarding
 - transactions occurring among businesses located in Maine
 - the spending patterns of households
 - transactions occurring between Maine entities and the world

IMPLAN Model Output: 12 MW Maine Aqua Ventus

	Direct	Multiplier	Total
	Impact	Effects	Impact
Output	\$31,657,480	\$20,290,125	\$51,947,605
	Per year	Per year	Per year
Employment	294	181	475
	Per year	Per year	Per year
Income	\$12,041,889	\$6,895,909	\$18,937,798
	Per year	Per year	Per year
Output	\$94,972,440	\$60,870,375	\$155,842,815
	Entire project	Entire project	Entire project
Employment	294	181	475
	Average jobs	Average jobs	Average jobs
Income	\$36,125,667	\$20,687,727	\$56,813,394
	Entire project	Entire project	Entire project
Job-Years	882	543	1,425
	Job-years	Job-years	Job-years

Table 4. Annual Statewide Economic Impact of a 12 MW Offshore Wind Power Project in Maine: 3-Year (2015-2017) Planning and Construction Period (Assuming \$166.7 Million in Capital Expenditures)

Ocean Energy Long-Term Contract Solicitation: Results

- Contract entered into with Ocean Renewable Power Company (ORPC) for ~5 MW of hydrokinetic tidal power
 - \$215 / MWh @ 2% yearly escalation
- Maine PUC approves the terms of a contract with Statoil for 12 MW
 Maine Hywind Pilot Project
 - \$270 / MWh @ 1% plus load growth yearly escalation
- Legislature revises statute so that a 2nd solicitation must be run
 Statoil pulls out of its Hywind Maine project in the Fall of 2013
- Maine PUC approves terms of a contract with Maine Aqua Ventus I GP LLC for 12 MW Maine Aqua Ventus Pilot Project
 - \$230 / MWh @ 2.25% yearly escalation

Summary

- Economic evaluation for new generation is market forecast focused
 - Develop robust market forecasts and scenarios
 - Analyze individual project characteristics
 - Location, energy output characteristics
 - Assess results
 - Factor in externalities and other factors
 - For above-market projects
 - May also evaluate
 - assumed financing sources and rates of return
 - » Cash flow model
 - economy-wide impacts
 - » Economic impact models

