

National Association of Regulatory Utility Commissioners

Tariff Design - Advanced Topics

Donald Hertzmark

July 2008 Baku, Azerbaijan

Look at the tariff as an outsider would

- Find out what is going on at country level
- Assess similarities & differences other countries' approaches
- Identify important impacts of tariff methodologies, levels and structures

Tariff Analysis & Assessment

- Assess consistency of approach throughout tariff construction
 - Cost coverage
 - Impacts on efficiency, trade and investment
 - Treatment of generation
 - Charges for other services
 - Special tariff categories
 - Impacts on lower income consumers

What considerations go into your network tariff construction?

- 1. There is tremendous variation in both the components and the final product
 - a. Variations among EU countries due largely to treatment of stranded costs & priority for new transmission investments
 - b. Limiting transmission charges is one of key ways to reduce retail charges
- 2. Tariffs can have a significant impact on trade and investment:
 - a. Optimal transmission tariffs, while desirable, are not necessary to stimulate trade and investment
 - b. A "good enough" tariff that covers costs and sends the right signals on congestion and location is an excellent starting point

Tariff Construction (cont.)

- 3. Cost coverage in full is a feature of all of the respondents that have successfully restructured
- 4. Many countries, including some EU members, use some sort of cross-subsidy to protect certain classes of electricity users
- 5. Where cross-subsidies are significant relative to the overall tariff revenue, potentially beneficial effects of separate tariffication of transmission are lost in the noise of the transfer payments
- 6. Incentive clauses in tariffs play a more prominent role than in the past

Impacts of Pricing Policies on Trade and Investment

- Prices only have to be "good-enough" to stimulate some trade and investment - especially if significant transmission investment is needed.
 - A "good-enough" tariff will
 - 1. Cover all costs of transmission, including new capacity
 - 2. Provide "reasonable" signals regarding congestion and location of new generation
 - 3. Reflect energy policy priorities renewables, cogeneration, etc.

A few years of "good-enough" can provide enough financial strength to implement a more sophisticated tariff

Impacts of Pricing Policies on Trade and Investment

- Subsidizing your customers, especially if they are foreigners, will not stimulate investment from them to improve transmission service
- Transmission and generation prices have asymmetric impact:
 - Effective pricing system is necessary but not sufficient for good outcomes,
 - Inefficient pricing system is sufficient in itself to assure bad outcomes

Impacts of Retail Pricing Policies on Trade and Investment

- The basics of pricing policy (cost recovery with reasonable differentials) goes far to promote both efficiency and investment
 fancy tariff structures are secondary to basic cost recovery with reasonable fairness
- High fees will encourage efficiency (low use) but discourage investment in new capacity
- Effort made to unbundle systems must be matched with efforts
 - to improve information flow through metering and operations analysis, and
 - to implement tariffs based on this information.

Retail Tariff Benchmarking - Impacts on Trade & Investment

- Tariffs often kept below full cost recovery
- Difficult to generate investment in sector with low tariffs
 - Investors are wary of situations requiring subsidies
 - Problem of competition with legacy plants countries subsidize consumption to keep plants running - reduces overall efficiency of power sector

Retail Tariff Benchmarking - Impacts on Trade & Investment

- Insufficient distinction between & among customer categories
- Increased trade helps to force retail tariff rationalization c.f. Hungary & Slovenia

Issues & Options With Regard to More Complex Tariffs

- How has unbundling affected the ability of system operators to minimize losses?
- How accurate are loss calculations in an integrated system given the large transit flows?
- What are the tradeoffs between tariff complexity and the implementation cost of the tariff?

What Comes Next?

- Unbundling
 - What is it?
 - Unbundling is the de-integration of utility charges for specific segments - generation, transmission, distribution, system operation, etc.
 - Why do we care about unbundling?
 - Unbundling, by making the utility operation more transparent, should provide regulators, users and suppliers with some of the information needed to assess and inform utility pricing policies; and . . .
 - The EU requires all entities trading into the Single Energy market to carry out, at a minimum, a financial unbundling of the utility accounts

What Comes Next? (Unbundling)

- How is unbundling carried out?
 - Utility must undergo a thorough audit
 - All costs are assigned to one or another of the operational units
 - As many common costs as can be identified will be assigned to one or more of the operational units
 - All transactions between operational units will be done on basis of approved tariffs (arms length)
 - TX and DX systems will be open to non-utility parties, provided there is sufficient transmission or distribution capacity

What Comes Next? (Unbundling)

- This is so complex, what is the upside?
 - With almost all costs identified, key parameters come to the fore, with their impacts on costs and prices
 - Time that electricity or power is supplied
 - Temporal or locational bottlenecks in TX system
 - Impacts of purchased power on retail prices
 - Private sector participation is eased with open access and transparent network pricing
 - Permits further corporatization of utility structure & improves transparency of organization

What Comes Next? (Unbundling)

- What is functional unbundling?
 - Functional unbundling is the creation of separate organizations to carry out the segmented services of the utility - Gx, Tx, Dx
 - This is normally done when
 - The utility is to be privatized in parts
 - There is the potential for establishing more than one company in one or more segments (usually Gx or Dx)

Ν

National Association of Regulatory Utility Commissioners

Time of Use and Locational Pricing

- Knowing how much it costs to supply electrical energy at a specific time is a key to more efficient operations
 - Time of use pricing (TOU) correlates the marginal cost of supply at any given time with the prices charged to some or all customers at that time
 - Usually applied to larger industrial, commercial and some residential customers
 - Additional metering required
 - Informed customers may be able to shift load, thereby reducing additional temporal costs

Time of Use and Locational Pricing

- Knowing how much it costs to supply electrical energy to a specific location is another key to more efficient operations
 - Locational pricing is based on the understanding that all system face constraints somewhere
 - Where there are constraints, there will be additional costs (e.g., redispatch, higher losses)
 - Locational pricing sends a signal to the causes of the problem (loads) and the potential cures (new generation or Tx) regarding location of facilities and value of additional Tx capacity

Open Access

- Open access is the name given to non-discriminatory access to the network by generators or loads
 - Open access facilitates private investment by removing one of the normal obstacles to new entrants, the absolute monopoly of the incumbent utility
 - Pricing the value of access is a key incentive for utilities
 - Price it too high and no one invests
 - Price it too low and there is little or no incentive for network utility to invest in system improvements

Country	Tariff Type & Description	Time of Day Differential	Average Values (€MWh)	
			Industrial	Commercial
Albania	Cost + rate of return (price discrimination by ownership status)		69.9	65-79
Bosnia- Herzegovina	Cost + rate of return	Time of day & seasonal	36-60	100
Bulgaria	Cost + rate of return	Industrial only	40	*
Croatia	Cost + rate of return	Industrial & commercial	54	77
UNMIK	Cost + rate of return	Time of day & seasonal	48-54	58-84
Former Yugoslav Republic of Macedonia	Cost + rate of return	Time of day & seasonal	32	77
Montenegro		Time of day	39-95	100-170
Romania	Cost + rate of return	Time of day	66	66
Serbia	Cost + rate of return	Seasonal	25	42
Turkey	Prepared by retail licensees	No	51	65

69

58

33

53

Country	Time of Day Differential	Average Values (€MW
Albania	n/a	77
Bosnia-Herzegovina	Time of day & seasonal	57
Bulgaria	Industrial only	51
Croatia	Time of day	74
UNMIK	Time of day & seasonal	70
Former Yugoslav Republic of	Time of day & seasonal	37

UNMIK	Time of day & seasonal	
Former Yugoslav Republic of Macedonia	Time of day & seasonal	
Montenegro	n/a	
Romania	Time of day	
Serbia	Seasonal	
Turkey	n/a	