

NARUC

Serving the consumer interest by seeking to improve the quality and effectiveness of public utility regulation in America.

Solar and Other New DG Technologies

Susan K. Ackerman Chair, Oregon Public Utility Commission Second Vice President, NARUC

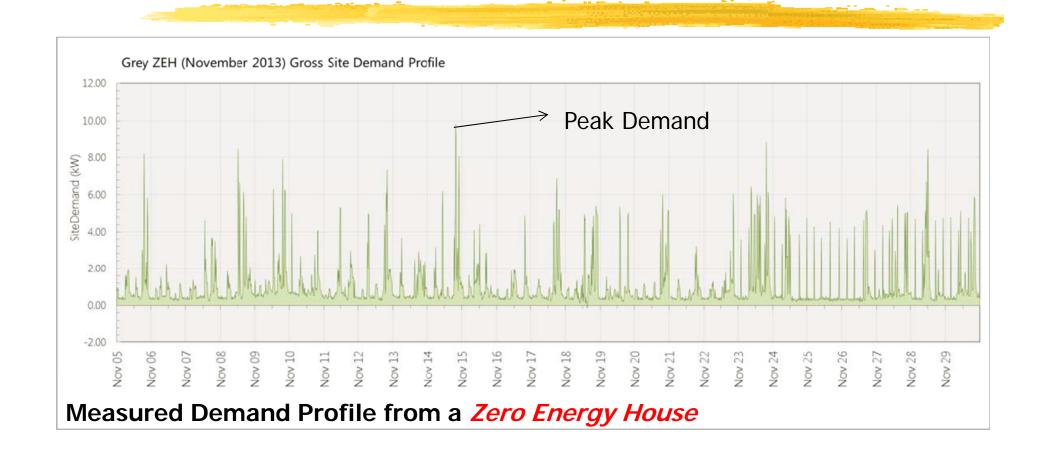
NARUC-CAMPUT Bilateral Roundtable July 12, 2014 Dallas, Texas

Challenges

- Intermittency safety & reliability
 - Resource adequacy ramp rate, over generation, cycling
 - System stability frequency, voltage
 - Transmission flow constraints, protection and coordination
 - Need grid support e.g. Smart inverters, with 2-way communication
- Fairness & equity cost shifts to non-participants
 - Net metering credits generally allow Solar PV customers to avoid paying fixed costs and those costs are shifted to non-participating customers through higher utility bills
- Shared cost recovery
 - Net metering and FIT rules are unlikely to require Solar PV hosts to pay equivalently for fixed costs
 - Death Spiral?

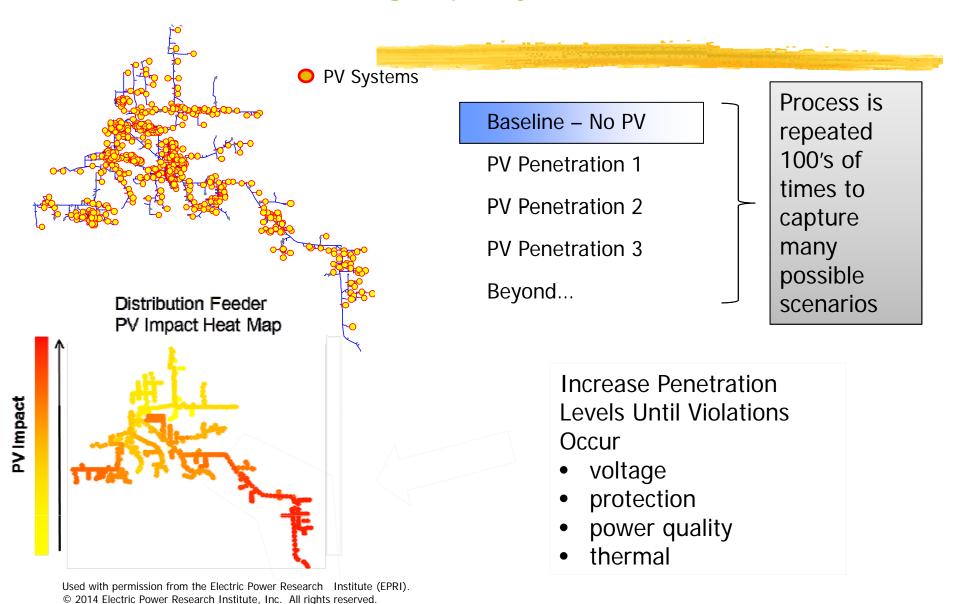
Utility investor

inextricably linked

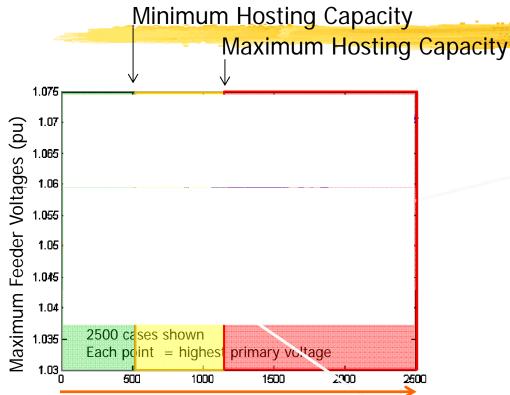


What are the options for addressing these challenges?

- How much intermittent resource can the grid absorb without violating safety or reliability metrics?
 - Significant disruptions if Solar PV approaches 20% of total energy on local grid
 - Need feeder-by-feeder power system impact study to assess costs & benefits
- Analysis -> impact of Solar PV on distribution system
 - Overvoltage and voltage variations
 - Solar PV masks demand on system: net zero energy is not net zero demand
 - Impact on equipment operation feeder regulators, load tap changes, switched capacitor banks
 - System protection relay desensitization, unintentional islanding
 - Each feeder has unique hosting capacity and at increasing penetration levels, violations can happen (voltage, protection, power quality, thermal)


Demand versus Energy

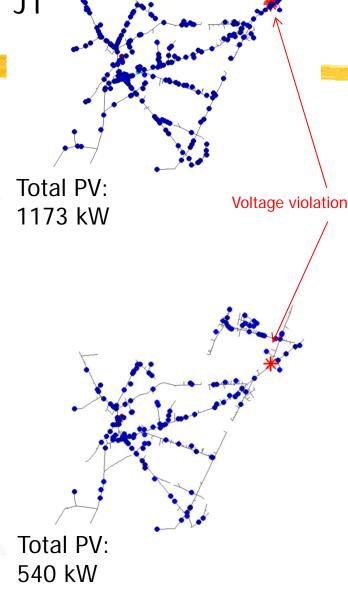
Energy Rich but Capacity/Demand Poor


Assessing Distribution System Impact

Feeder Hosting Capacity: A Brief Primer

Hosting Capacity - Sample Results

Overvoltage Results Shown for Feeder J1



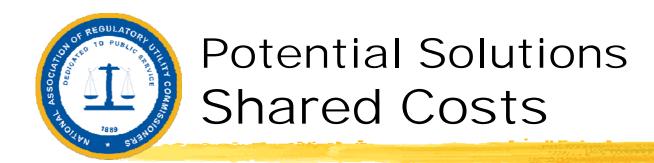
Increasing penetration (kW)

No observable violations regardless of size/location

Possible violations based upon size/location

Observable violations occur regardless of size/location

Used with permission from the Electric Power Research Institute (EPRI). © 2014 Electric Power Research Institute, Inc. All rights reserved.



- Examine interconnection standards & refresh
- Ability to require smart inverters with two-way communication
 - Smart inverters enable grid supportive Solar PV and permit more Solar PV
 - Safety & reliability codes currently prohibit smart inverters
 this will change
- > Let utility "throttle" amount of Solar PV on feeders
 - Distribution planning
 - Ability to say "no" (or, "not on this feeder but on this other feeder")
 - Saying "no" based on operational metrics

Fairness & equity

- Addressing shared cost recovery may also address fairness & equity issues
- Third party leasing may bring in more participants that are not as wealthy
- Lawmakers incentivize Solar PV lawmakers could also fund bill payment assistance
- Can be a difficult and frustrating issue in US

- Contributor to "fairness & equity" challenge
- Even net-zero buildings use the grid <u>and</u> the utility's central station generation
 - Exception: generation with batteries/storage and complete disconnection from the grid
- Predominantly a rate design issue
 - "Price per kWh sold" rate designs shift shared fixed costs to others (non-participants)

Potential Solutions: Rate Design Alternatives to per kWh sold pricing

Three Example Alternatives:

Straight fixed-variable rate design

Imposes a fixed charge to customers, designed to recover all of a utility's fixed costs

Customer demand charge

- May include fixed charges and a volumetric rate for each kilowatt-hour of consumption, but may also include a variable charge based on the individual customer's peak demand
- May accurately allocate non-energy costs of serving customers because utility must design its system and plan for the ability to meet customers' peak needs

Performance Based Ratemaking

- Utility's revenues adjusted based on performance and incentives set for utilities to meet or exceed benchmarks determined for certain operations
- If a benchmark is not met, the utility must absorb the extra costs.
- If benchmark met or slightly better, utility keeps the profits and shares them with shareholders;
- If benchmark exceeded by determined margins, money is returned to customers

Strategies for Utilities

- Regulators cannot protect utilities from disruptive competition
- How to adapt is up to the utility (in large part)
 - e.g., Hawaii
- Utility adaptation:
 - Focus on fixed cost recovery may be a losing long-term strategy
 - Creating value for customers will be key
 - Create value for shareholders outside regulated business
 - Anticipate how current investments will support a more distributed future

Strategies for Regulators

- Remember your role: adequate and reliable service at just and reasonable rates
- Role does not change, unless your statutes change
- Economic regulators cannot protect utilities from disruptive competition
- Economic regulation not intended to forestall or foster disruptive competition
- Regulators must find the right balance between "policy changes and market innovation that can maintain sector stability and encourage innovation."

Strategies for Regulators

- In striking the balance, remember that facts are your friends:
 - Are customers being served well now?
 - Can customers be better served with new entrant/product/nonutility service?
 - Is there or will there be adequate competition to discipline the market for the new entrant, product or service?
 - Is the utility presence helping or hindering new entrant/product/service?
- What replaces the old model, if the current one isn't working?

Strategies for Regulators

Hallmarks of good regulation next 5-10 years:

- Understand the facts on the ground in your jurisdiction
- Anticipate, but not too much
 - Regulatory change takes time
- Gradualness, if possible*
- Patience and attention to detail
- Willingness to experiment and change course

*Depends on the facts on the ground

