

Energy Trading in the SAPP

www.sapp.co.zw

Dr. Lawrence Musaba SAPP Coordination Centre

By

JULY 2009

CONTENTS

1. TRADING ARRANGEMENTS

2. BILATERAL TRADING

3. SHORT-TERM ENERGY MARKET

4. COMPETITIVE MARKET

5. CONCLUSION

1. TRADING ARRANGEMENTS

- **1.1 Rationale for Power Trading**
- Some countries in the SAPP have excess Generation Capacity, others have deficit:
 - The result is energy flow between member countries in form of energy trading.
- Northern network is predominantly hydro and Southern network thermal:
 - Good generation mix that mitigates drought
 - Members share in the resulting benefit.

1.2 Power Trading Platforms

Co-operative Competitive <u>S A P P</u>

5

SOUTHERN AFRICAN POWER POOL

BILATERAL CONTRACTS

- Takes up 90-95% of energy trade: 15 20 TWh
- Peak, off-peak and standard times.

STEM

- The short-term energy market (STEM) was introduced in April 2001
- Precursor to full competition
- Caters for 5-10% of energy trade: 0.8 4.3 TWh
- Daily and hourly contracts
- Off-peak periods

Competitive Market Development

- Development of competitive market in the form of a Day-ahead Market (DAM) started in 2003.
- The SAPP has also developed an Ancillary Services Market and a Balancing Mechanism.

2. BILATERAL TRADING

- The bulk of cross border trading in electricity is governed by fixed co-operative bilateral contracts.
- **Generally cover a period from 1-5 five years, could be longer.**
- The agreements provide for assurance of security of supply but are not flexible to accommodate varying demand profiles and prices.
- The pricing of electricity depends on the consumption period; Peak, Standard and off-peak.
- Essential for financing of new generation & transmission projects.
- Price: Negotiated between willing buyer & seller.
 - Price range: 0.85 3.00+ USc/kWh

BILATERAL CONTRACTS

- Can be firm on non-firm contracts
- Non-firm contracts:
 - Are interruptible with notice
 - If notice given, no penalties
 - Generally less than 75% reliable.
- Firm contracts:
 - Most have attached reliability premium
 - Penalties for non-delivery applies.

Pricing of Bilateral contracts

- The parties agree to both capacity and energy charges.
- The prices are negotiated by both parties.
- Wheelers are notified and are a party to the agreement.

Billing

- Direct billing from seller to buyer.
- Billing is on schedules and not on actual.

Metering and settlement

- Actual meter readings done on monthly basis.
- Inadvertent energy management follows.

- Bilateral trading has been increasing year by year.
- **Demand in the SAPP is rising by 3% annually.**
- Small reduction in 2004 rehabilitation projects

Bilateral Contracts - 2005

HCB supply (hydro) - 1770 MW, ESKOM supply (thermal) -1706 MW

SOUTHERN AFRICAN POWER POOL

3. THE SHORT-TERM ENERGY MARKET

Documentation

The SAPP documents that govern the STEM are:

- Legal Agreement
- STEM Book of Rules:
 - Trading Rules
 - Financial Rules

Participation

- Participation is open to all Operating Members and IPPs.
- Participants are levied 1% administration fee.

STEM Design Principles

- i. Transmission rights Bilateral contracts have first priority of transmission over STEM contracts.
- ii. Security requirements Participants lodge sufficient security before trading commences.
- iii. Settlement Accounting on daily basis with monthly billing for all transactions in USD or ZAR.
- iv. Allocation method Allocation based on available transmission capability and fair competitive bidding.
- v. Type of contracts: Daily and hourly firm contracts.

STEM Trading Timeline

- At 08:30 HRS, a day before trading
 - SAPP-CC publishes USD to ZAR exchange rate.
- Any time before 09:30 HRS, a day before trading
 - Participants submit offers & bids to SAPP-CC.
- At 09:30 HRS, a day before trading
 - The market close.
 - SAPP-CC matches offers & bids for any future trading day;
- At 12:00 HRS, a day before trading
 - SAPP-CC publishes the results to all Participants.
- After 12:00 HRS, a day before trading
 - Members negotiate for Post-STEM bilateral trade
 - Financial settlement follows.

Pricing of STEM Contracts

- Participants send bids and offers to the SAPP-CC.
- SAPP-CC matches bids and offers.
- The prices are set based on matching sellers price.
- STEM contracts

Billing

- The SAPP-CC bills participants on a daily basis.
- Billing is on schedules and not on actual.

Metering and settlement

- Financial settlement on daily basis.
- Penalties indicated where applicable.
- Inadvertent EM is part of overall settlement.

STEM TRADING: Supply & Demand

Demand

STEM TRADING: Energy Traded & Cost

STEM Current setbacks

- Sellers control the price in each and every hour.
- Allocation of offers and bids not competitive.
- Insufficient generation capacity to enable competitive trading.

The desire for the SAPP is to move towards a competitive market and to develop and apply trading rules that suit a competitive environment.

- There has been no energy trading on the short-term energy market (STEM) from June 2007 due to:
 - Lack of power supply in the market
 - Constrained transmission paths.
- Bilateral trading has however continued.

4. THE SAPP COMPETITIVE MARKET

4.1 Goals and Methodology

<u>GOALS</u> of the SAPP DAM design:

- Establish an efficient and competitive marketplace
- Ensure that consumers benefit from the market

<u>METHODOLOGY</u>:

- Development of consistent market mechanisms.
- Efficient price signals for the procurement and transmission of electricity.
- Assurance of fair and open access to the transmission system.
- Optimization of generation & transmission capacity.

4.2 DAM Features

Market for secure, effective and nondiscriminatory trade of electricity:

- Trading to be concluded daily for delivery next day
- Forward bidding up to 10 days
- Participants submit bids (purchase) & (sale) offers
- Closed market only market operator and participant know the details of the bid / offer

Provides a neutral reference price

- Price discovery
- Could provide reference for bilateral contracts

Supports an auction-trading model

- All sales & demand bids are aggregated at a fixed time
- The balance price is valid for all trades

Tool for managing grid congestion

System price (no grid congestion)

Area prices (if transmission capacity is exceeded)

4.3 DAM Price Setting Mechanism

Free Market

- Allows free trade in energy
- In theory
 - Many small players
 - Not Storable commodity
 - No barriers to new entrants
- In Practice: Dominant player
- Tried to some extent in the USA Bidding (Used in UK)

- Bids dispatched using lowest bid to match demand
- Pay all bidder at most expensive bid accepted (marginal bid)
- Marginal bid price should be close to SRMC
- In theory: Profit maximizing bidders should bid close to SRMC
- In practise: Gaming
- Tends to exclude demand side sources of energy

4.3 DAM Design Principles

1. Market type

- Auction type market
- Participants bid into market for all 24 hrs of next/future day.

2. Bidding

- Participants submit both purchase & sale bids.
- Types of bids: Single hour and Block bids.

3. Bid areas

Multiple bid areas with configurable transmission capacities between areas.

4. Price calculation

- At defined time, market closes & Market Clearing Price (MCP) calculated.
- MCP is price where supply equals demand without taking transmission constraints into consideration.
- 5. Congestion Management
 - Calculated contract flow between bid areas computed & compared with available transmission capacity for spot trade.
 - In case of congestion, market splitting performed, and local area prices calculated.
- 6. Auction results
 - Participants receive area prices with associated volume. Multiple currencies.

4.4 DAM Trading Timeline

- ♦ 08:30 HRS
 - Usage of the bilateral contracts registered by participants.
 - Calculation of available transmission capacity performed.
 - Opening of the market for delivery day X.
- 09:30 HRS Market is closed for delivery day X.
- 10:00 HRS Price calculation
- 12:00 HRS Distribution of prices and schedules
- 12:30 HRS Participants receive price information & schedules.
- 13:00 HRS Deadline for complaints
- 14:00 HRS A report about the contracted volume per Balance Responsible Party is sent to System Operators.
- 24.00 HRS Delivery start for Day-ahead contracts for hour 1

DAM System Communication Methods...

Through the Internet

- Similar to current method
- Web address published by Market Operator

Electronic Mail

- Templates distributed by Market Operator
- E-Mail address: <u>damtradingdesk@sapp.</u> <u>co.zw</u>
- By facsimile (back up solution)
 - Fax number provided

Little

SAPP believes that the creation of a competitive market would:

- Help to optimise the use of regional resources
- Assist in determining the correct electricity price in the pool
- Send signals for investments and real time utilization of existing assets; transmission, generation and consumption.
- Enable the demand side to respond to the supply side price signals.
- Designing a market is not simply a matter of copy and paste exercise, but hands on experience is necessary to know possible solutions of practical problems.

THANK YOU

