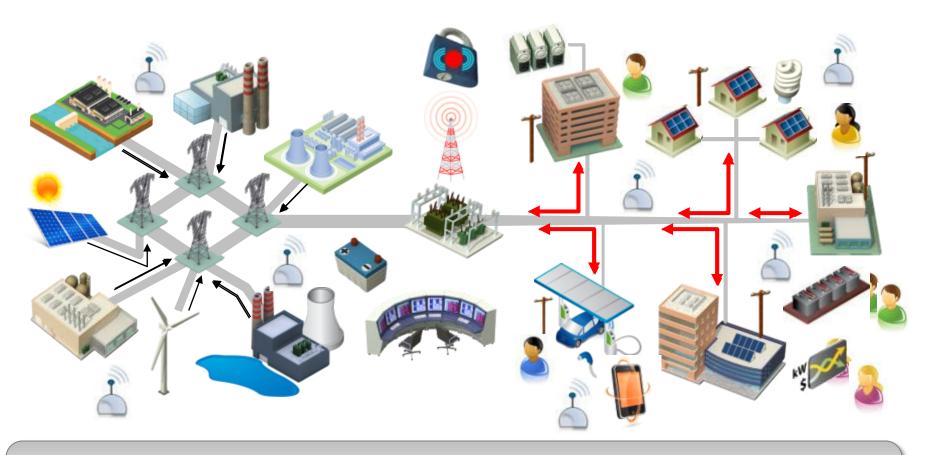


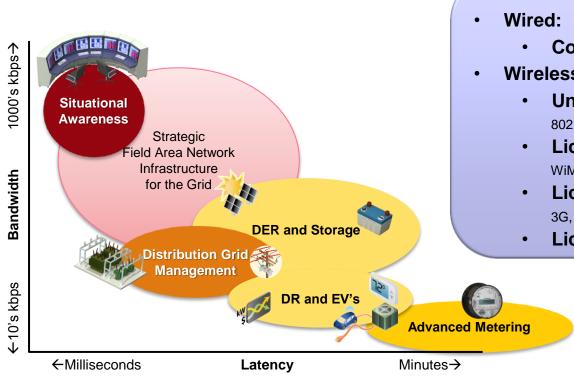
Communications in the Utility Industry Trends and Examples

Matt Wakefield
Director, Information, Communication &
Cyber Security


NARUC Winter Meeting: Spectrum, Spectrum Everywhere, Who Needs it and Why?

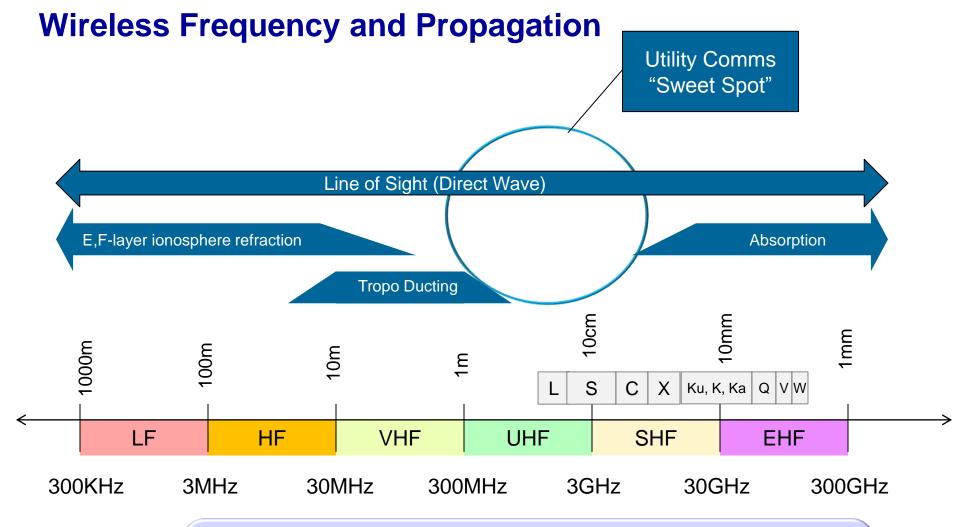
February 17, 2015

How the Grid is Transforming


Increasing Amount of Connected Devices

Communications is a Key Enabler for a Flexible, Resilient and Connected and Power System

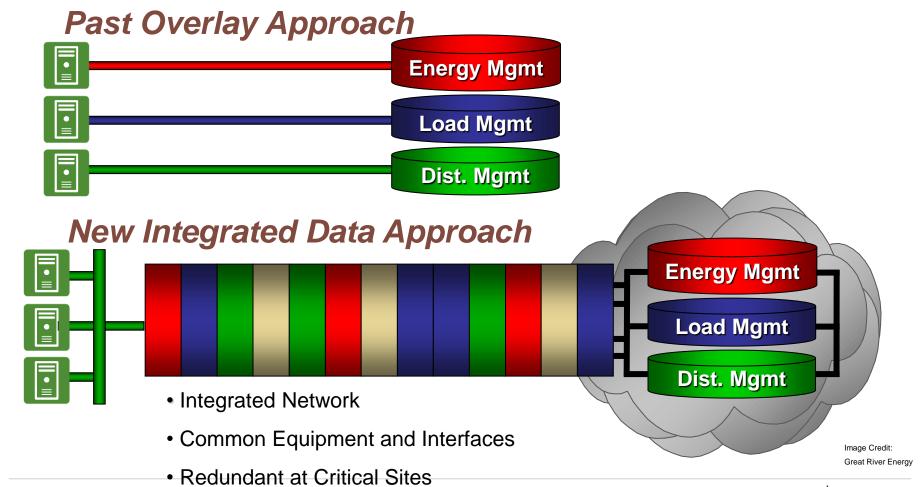
Communication Requirements & Options


Options:

- **Copper, Power Line Carrier, Fiber**
- Wireless:
 - **Unlicensed Private** 802.11 (2.4GHZ, 5GHz), 802.15.4g Mesh (900MHz)
 - **Licensed Private** WiMAX 1.4, 1.8, 3.65GHz, LTE 700MHz, 1.8 GHz
 - **Licensed Public** 3G, LTE
 - **Licensed Public Safety Sharing**

Communication Requirements:

- **Available**
- **Affordable**
- Reliable
- Resilient

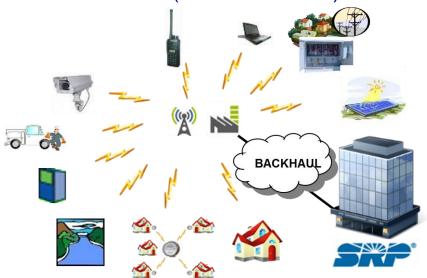

Key Drivers and Applications to Determine Optimum Frequency

- Grid Reliability (Outage identification, restoration & analysis)
- Grid Health Predictive Analytics
- Renewable Integration
- Technology Stability & Convergence (Utility Assets Long Lifecycle)

Trends Impacting Utility Communications

 Transition from application-specific (overlay) networks, to integrated and unified networks

Field Area Networks - How EPRI is Assisting Utilities to Assess


		SRP	Duke	H-One	UI	GRE	NPPD	HQ	Ameren
1	Securing the FAN (connecting devices to the FAN)	V	V	$\overline{\mathbf{V}}$	✓			V	$\overline{\mathbf{Q}}$
2	High reliability network architecture	$\overline{\mathbf{V}}$	V	$\overline{\mathbf{V}}$	✓	$\overline{\mathbf{V}}$	$\overline{\mathbf{V}}$	$\overline{\mathbf{V}}$	$\overline{\mathbf{V}}$
3	QoS w/ shared and/or impaired network	V	V	$\overline{\mathbf{V}}$	✓	$\overline{\mathbf{V}}$	$\overline{\mathbf{V}}$		$\overline{\mathbf{V}}$
4	AMI vs. broadband FAN technologies for DFA				V				
5	Reliability of public carrier networks, network entry	V	V		V	V	$\overline{\mathbf{V}}$	V	
6	Long-term reliability, Netwk Mgmt (monitoring/metrics)	V	V		V	V		V	V
8	Distributed vs. centralized processing		V						
13	Private networks: Requirements and Propagation	V		$\overline{\mathbf{V}}$	V	V		V	V
16	Integrating applications beyond electric delivery	V							
18	Sharing Networks with Public Safety					$\overline{\mathbf{V}}$	$\overline{\mathbf{Q}}$	V	
19	Operation in the 3.65 GHz band	V				V			$\overline{\checkmark}$

A Case Study on

A Field Area (communications) Network Pilot

3.65GHz equipment tested - WiMAX

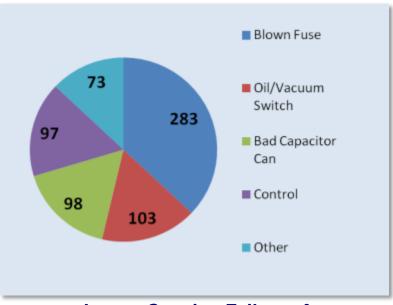
Today, Multiple Communication Systems for Different Applications

- Distribution Feeder Automation: Unlicensed 900MHz
- Field Emergency Comm's: 150MHz Licensed Paging
- Capacitor Control (Volt/VAR): 150MHz Licensed Paging
- Advanced Metering: 900MHz Unlicensed Mesh w/Cell Backhaul
- Vehicle Location: Commercial Cellular
- Water SCADA: Licensed & Unlicensed 900 MHz
- Truck Mounted Laptops: Commercial Cellular

Drivers

- Reliability: DFA Expansion
- Renewable Integration
- Efficiency: Volt/VAR
- Fault Identification
- Outage Response & Restore
- Automation
- Physical Security (Video)

A wireless broadband network can be integrated across a utility to serve as the unifying infrastructure.


A Case Study on

A Capacitor Bank Health Monitor

Installation of Advanced Meter Capacitor Bank Health Monitor

Issues Causing Failure of Capacitor Banks

AMI capacitor bank health monitors identified over 650 problems in the first 6 months and changed the inspection schedule from once a year to once a day.

Communications can ENABLE innovations we haven't thought of

EPRI Smart Grid Demonstration Case Studies

Report on http://smartgrid.epri.com/Demo.aspx

Rich Set of Results and Sharing – Take Advantage of it

DER Architecture Framework, Use Cases & Standards Contributions

Conservation Voltage Reduction

Customer Engagement Learnings (Behaviors & Technologies)

Cost Benefit Analysis Framework & Guidebooks

Communication & Cyber Security Infrastructure

Most types of DER (Loads and Resources) not using standard protocols

Vendors going out of business & stranded Assets (utilities & customers)

Regulatory Uncertainty

Data Analytics

Quote: "Utility Culture Eats Strategy for Lunch"

Be Aware – No Single Solution Fits All

These are Strategic Activities (Impacts multiple business units)

Integrated Grid Pilots and Demonstrations, Unified Utility Architecture

Industry Collaboration (International, Government, Vendors, Academia, Labs, etc.)

Together....Shaping the Future of Electricity